PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Overview

Stochastic CSLR

This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Quick Start

1. Installation

pip install git+https://github.com/zheniu/stochastic-cslr

Also, you need to install sclite for evaluation. Take a look at step 2 for instructions.

2. Prepare the dataset

  • Download the RWTH-PHOENIX-2014 dataset here.
  • Unzip it and obtain the path to phoenix-2014-multisigner/ folder for later use.
  • Install sclite for evaluation. Check phoenix-2014-multisigner/evaluation/NIST-sclite_sctk-2.4.0-20091110-0958.tar.bz2 for detail.
  • After installing sclite, put it in your PATH.

3. Run a quick test

You can use the script quick_test.py for a quick test.

python3 quick_test.py --data-root your_path_to/phoenix-2014-multisigner

By specifying the model type --model sfl/dfl, the data split --split dev/test, whether to use a language model--use-lm, you can get the following results:

Model WER (dev) sub/del/ins (dev) WER (test) sub/del/ins (test)
DFL 27.1 12.7/7.4/7.0 27.7 13.8/7.3/6.6
SFL 26.2 12.7/6.9/6.7 26.6 13.7/6.5/6.4
DFL + LM 25.6 11.5/9.2/4.9 26.4 12.4/9.3/4.7
SFL + LM 24.3 11.4/8.5/4.4 25.3 12.4/8.5/4.3

Note that these results are slightly different from the paper as a different random seed is used.

You may also take a look at quick_test.py as it shows how to use the pretrained models.

4. Train your own model

The configuration files for deterministic and stochastic fine-grained labeling are put under config/. The training script is based on a PyTorch experiment runner torchzq, which automatically reads the hyperparameters in the YAML file and passes them to stochastic_cslr/runner.py.

Before running, change the data_root in the YAML configurations to phoenix-2014-multisigner/ first.

Train (for instance, dfl):

tzq config/dfl-fp16.yml train

Test the trained model

tzq config/dfl-fp16.yml test

Citation

You may cite this work by:

@inproceedings{niu2020stochastic,
  title={Stochastic Fine-Grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition},
  author={Niu, Zhe and Mak, Brian},
  booktitle={European Conference on Computer Vision},
  pages={172--186},
  year={2020},
  organization={Springer}
}
Owner
Zhe Niu
PhD Candidate @ CSE, HKUST
Zhe Niu
ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs

(Comet-) ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs Paper Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sa

AI2 152 Dec 27, 2022
Image Segmentation Evaluation

Image Segmentation Evaluation Martin Keršner, [email protected] Evaluation

Martin Kersner 273 Oct 28, 2022
Simple, efficient and flexible vision toolbox for mxnet framework.

MXbox: Simple, efficient and flexible vision toolbox for mxnet framework. MXbox is a toolbox aiming to provide a general and simple interface for visi

Ligeng Zhu 31 Oct 19, 2019
A community run, 5-day PyTorch Deep Learning Bootcamp

Deep Learning Winter School, November 2107. Tel Aviv Deep Learning Bootcamp : http://deep-ml.com. About Tel-Aviv Deep Learning Bootcamp is an intensiv

Shlomo Kashani. 1.3k Sep 04, 2021
The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color

The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color Overview Code and dataset for The World of an Octopus: H

1 Nov 13, 2021
A Moonraker plug-in for real-time compensation of frame thermal expansion

Frame Expansion Compensation A Moonraker plug-in for real-time compensation of frame thermal expansion. Installation Credit to protoloft, from whom I

58 Jan 02, 2023
Official Datasets and Implementation from our Paper "Video Class Agnostic Segmentation in Autonomous Driving".

Video Class Agnostic Segmentation [Method Paper] [Benchmark Paper] [Project] [Demo] Official Datasets and Implementation from our Paper "Video Class A

Mennatullah Siam 26 Oct 24, 2022
Face recognition project by matching the features extracted using SIFT.

MV_FaceDetectionWithSIFT Face recognition project by matching the features extracted using SIFT. By : Aria Radmehr Professor : Ali Amiri Dependencies

Aria Radmehr 4 May 31, 2022
Node Editor Plug for Blender

NodeEditor Blender的程序化建模插件 Show Current 基本框架:自定义的tree-node-socket、tree中的node与socket采用字典查询、基于socket入度的拓扑排序 数据传递和处理依靠Tree中的字典,socket传递字典key TODO 增加更多的节点

Cuimi 11 Dec 03, 2022
Code for Multimodal Neural SLAM for Interactive Instruction Following

Code for Multimodal Neural SLAM for Interactive Instruction Following Code structure The code is adapted from E.T. and most training as well as data p

7 Dec 07, 2022
Picasso: a methods for embedding points in 2D in a way that respects distances while fitting a user-specified shape.

Picasso Code to generate Picasso embeddings of any input matrix. Picasso maps the points of an input matrix to user-defined, n-dimensional shape coord

Pachter Lab 45 Dec 23, 2022
Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data recorded in NumPy array

shindo.py Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data stored in NumPy array Introduction Japa

RR_Inyo 3 Sep 23, 2022
🏎️ Accelerate training and inference of 🤗 Transformers with easy to use hardware optimization tools

Hugging Face Optimum 🤗 Optimum is an extension of 🤗 Transformers, providing a set of performance optimization tools enabling maximum efficiency to t

Hugging Face 842 Dec 30, 2022
When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings

When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings This is the repository for t

RegLab 39 Jan 07, 2023
COPA-SSE contains crowdsourced explanations for the Balanced COPA dataset

COPA-SSE Repository for COPA-SSE: Semi-Structured Explanations for Commonsense Reasoning. COPA-SSE contains crowdsourced explanations for the Balanced

Ana Brassard 5 Jul 31, 2022
Linear algebra python - Number of operations and problems in Linear Algebra and Numerical Linear Algebra

Linear algebra in python Number of operations and problems in Linear Algebra and

Alireza 5 Oct 09, 2022
A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset.

A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset. This repo contains scripts to train RL agents to navigate the closed world and collect vi

MUGEN 11 Oct 22, 2022
Simple embedding based text classifier inspired by fastText, implemented in tensorflow

FastText in Tensorflow This project is based on the ideas in Facebook's FastText but implemented in Tensorflow. However, it is not an exact replica of

Alan Patterson 306 Dec 02, 2022
Contrastively Disentangled Sequential Variational Audoencoder

Contrastively Disentangled Sequential Variational Audoencoder (C-DSVAE) Overview This is the implementation for our C-DSVAE, a novel self-supervised d

Junwen Bai 35 Dec 24, 2022
Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021)

Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021) This is the implementation of PSD (ICCV 2021),

12 Dec 12, 2022