Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations

Overview

HierarchicyBandit

Introduction

This is the implementation of WSDM 2022 paper : Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations
The reference codes for HCB and pHCB, which are based on three different base bandit algorithms.

  1. LinUCB from A contextual-bandit approach to personalized news article recommendation
  2. epsilon-Greedy [This strategy, with random exploration on an epsilon fraction of the traffic and greedy exploitation on the rest]
  3. Thompson Sampling from Thompson Sampling for Contextual Bandits with Linear Payoffs

Files in the folder

  • data/
    • MIND/ and TaoBao/
      • item_info.pkl: processed item file, including item id, item feature and embeddings for simulator;
      • user_info.pkl: processed user file, including user id, and embeddings for simulator;
      • item_info_ts.pkl: processed item file for Thompson sampling;
  • algs/: implementations of PCB and pHCB based on LinUCB.
  • algsE/: implementations of PCB and pHCB based on epsilon-Greedy.
  • algsTS/: implementations of PCB and pHCB based on Thompson Sampling.

Note

  1. Before testing the algorithms, you should modify the settings in config.py.
  2. For thompson sampling, we provide another 16 dimensonal feature vectors to run the experiments, since it can be faster . The original feature vectors are also work with the algorithms.
  3. the user_info.pkl and item_info.pkl is formated as dictionary type.
  4. The implementation of ConUCB is released at ConUCB. HMAB and ICTRUCB are specical case of CB-Category and CB-Leaf.

Usage:

Download the HierarchicyBandit.zip and unzip. You will get five folders, they are algs/, algsE/, algsTS/, data/, and logger/.

Parameters:
The config.py file contains:

dataset: is the dataset used in the experiment, it can be 'MIND' or 'TaoBao';  
T: the number of rounds of each bandit algorithm;  
k: the number of items recommended to user at each round, default is 1;  
activate_num: the hyper-papamter p for pHCB;  
activate_prob: the hyper-papamter q for pHCB;  
epsilon: the epsilon value for greedy-based algorithms;  
new_tree_file: the tree file name;  
noise_scale: the standard deviation of environmental noise;  
keep_prob: sample ratio; default is 1.0, which means testing all users.
linucb_para: the hyper-parameters for linucb algorithm;
ts_para: the hyper-parameters for thompson sampling algorithm;
poolsize: the size of candidate pool;
random_choice: whether random choice an item to user;   

Environment: python 3.6 with Anaconda To run the bandit codes based on LinUCB:

$ cd algs
$ python simulator_multi_process.py

To run the bandit codes based on epsilon-Greedy:

$ cd algsE
$ python simulator_multi_process.py

To run the bandit codes based on Thompson sampling:

$ cd algsTS
$ python simulator_multi_process.py
Owner
yu song
I am a master at Huazhong University of Science and Technology(HUST)
yu song
Pytorch implementation of "A simple neural network module for relational reasoning" (Relational Networks)

Pytorch implementation of Relational Networks - A simple neural network module for relational reasoning Implemented & tested on Sort-of-CLEVR task. So

Kim Heecheol 800 Dec 05, 2022
EfficientNetV2 implementation using PyTorch

EfficientNetV2-S implementation using PyTorch Train Steps Configure imagenet path by changing data_dir in train.py python main.py --benchmark for mode

Jahongir Yunusov 86 Dec 29, 2022
Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES)

Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES) This repo contains the full NITRATES pipeline for maximum likelihood-driven discov

13 Nov 08, 2022
PyTorch Code for the paper "VSE++: Improving Visual-Semantic Embeddings with Hard Negatives"

Improving Visual-Semantic Embeddings with Hard Negatives Code for the image-caption retrieval methods from VSE++: Improving Visual-Semantic Embeddings

Fartash Faghri 441 Dec 05, 2022
An official implementation of MobileStyleGAN in PyTorch

MobileStyleGAN: A Lightweight Convolutional Neural Network for High-Fidelity Image Synthesis Official PyTorch Implementation The accompanying videos c

Sergei Belousov 602 Jan 07, 2023
This repo is a C++ version of yolov5_deepsort_tensorrt. Packing all C++ programs into .so files, using Python script to call C++ programs further.

yolov5_deepsort_tensorrt_cpp Introduction This repo is a C++ version of yolov5_deepsort_tensorrt. And packing all C++ programs into .so files, using P

41 Dec 27, 2022
Apache Spark - A unified analytics engine for large-scale data processing

Apache Spark Spark is a unified analytics engine for large-scale data processing. It provides high-level APIs in Scala, Java, Python, and R, and an op

The Apache Software Foundation 34.7k Jan 04, 2023
Time Series Forecasting with Temporal Fusion Transformer in Pytorch

Forecasting with the Temporal Fusion Transformer Multi-horizon forecasting often contains a complex mix of inputs – including static (i.e. time-invari

Nicolás Fornasari 6 Jan 24, 2022
Deep Q-learning for playing chrome dino game

[PYTORCH] Deep Q-learning for playing Chrome Dino

Viet Nguyen 68 Dec 05, 2022
Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol.

Updated Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol. Introduction This balenaCloud (previously

Remko 1 Oct 17, 2021
Repo for the Video Person Clustering dataset, and code for the associated paper

Video Person Clustering Repo for the Video Person Clustering dataset, and code for the associated paper. This reporsitory contains the Video Person Cl

Andrew Brown 47 Nov 02, 2022
nnFormer: Interleaved Transformer for Volumetric Segmentation

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
This is the official implementation of Elaborative Rehearsal for Zero-shot Action Recognition (ICCV2021)

Elaborative Rehearsal for Zero-shot Action Recognition This is an official implementation of: Shizhe Chen and Dong Huang, Elaborative Rehearsal for Ze

DeLightCMU 26 Sep 24, 2022
Minimal deep learning library written from scratch in Python, using NumPy/CuPy.

SmallPebble Project status: experimental, unstable. SmallPebble is a minimal/toy automatic differentiation/deep learning library written from scratch

Sidney Radcliffe 92 Dec 30, 2022
MacroTools provides a library of tools for working with Julia code and expressions.

MacroTools.jl MacroTools provides a library of tools for working with Julia code and expressions. This includes a powerful template-matching system an

FluxML 278 Dec 11, 2022
Implementation of light baking system for ray tracing based on Activision's UberBake

Vulkan Light Bakary MSU Graphics Group Student's Diploma Project Treefonov Andrey [GitHub] [LinkedIn] Project Goal The goal of the project is to imple

Andrey Treefonov 7 Dec 27, 2022
Simple node deletion tool for onnx.

snd4onnx Simple node deletion tool for onnx. I only test very miscellaneous and limited patterns as a hobby. There are probably a large number of bugs

Katsuya Hyodo 6 May 15, 2022
DCSL - Generalizable Crowd Counting via Diverse Context Style Learning

DCSL Generalizable Crowd Counting via Diverse Context Style Learning Requirement

3 Jun 13, 2022
PyTorch Implement of Context Encoders: Feature Learning by Inpainting

Context Encoders: Feature Learning by Inpainting This is the Pytorch implement of CVPR 2016 paper on Context Encoders 1) Semantic Inpainting Demo Inst

321 Dec 25, 2022
Portfolio analytics for quants, written in Python

QuantStats: Portfolio analytics for quants QuantStats Python library that performs portfolio profiling, allowing quants and portfolio managers to unde

Ran Aroussi 2.7k Jan 08, 2023