CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer

Related tags

Deep LearningCSAW-M
Overview

CSAW-M

This repository contains code for CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer. Source code for training models to estimate the mammographic masking level along with the checkpoints are made available here.
The repo containing the annotation tool developed to annotate CSAW-M could be found here. The dataset could be found here.


Training and evaluation

  • In order to train a model, please refer to scripts/train.sh where we have prepared commands and arguments to train a model. In order to encourage reproducibility, we also provide the cross-validation splits that we used in the project (please refer to the dataset website to access them). scripts/cross_val.sh provides example commands to run cross-validation.
  • In order to evaluate a trained model, please refer to scripts/eval.sh with example commands and arguments to evaluate a model.
  • Checkpoints could be downloaded from here.

Important arguments defined in in the main module

  • --train and --evaluate which should be used in training and evaluating models respectively.
  • --model_name: specifies the model name, which will then be used for saving/loading checkpoints
  • --loss_type: defines which loss type to train the model with. It could be either one_hot which means training the model in a multi-class setup under usual cross entropy loss, or multi_hot which means training the model in a multi-label setup using multi-hot encoding (defined for ordinal labels). Please refer to paper for more details.
  • --img_size: specifies the image size to train the model with.
  • Almost all the params in params.yml could be overridden using the corresponding arguments. Please refer to main.py to see the corresponding args.

Other notes

  • It is assumed that main.py is called from inside the src directory.
  • It is important to note that in the beginning of the main script, after reading/checking arguments, params defined in params.ymlis read and updated according to args, after which a call to the set_globals (defined in main.py) is made. This sets global params needed to run the program (GPU device, loggers etc.) For every new high-level module (like main.py) that accepts running arguments and calls other modules, this function shoud be called, as other modules assume that these global params are set.
  • By default, there is no suggested validation csv files, but in cross-validation (using --cv) the train/validation splits in each fold are extracted from the cv_files paths specified in params.yml.
  • In src/experiments.py you can find the call to the function that preprocesses the raw images. For some images we have defined a special set of parameters to be used to ensure text is successfully removed from the images during preprocessing. We have documented every step of the preprocessing function to make it more udnerstandable - feel free to modify it if you want to have your own preprocessed images!
  • The Dockerfile and packages used in this project could be found in the docker folder.

Citation

If you use this work, please cite our paper:

@article{sorkhei2021csaw,
  title={CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer},
  author={Sorkhei, Moein and Liu, Yue and Azizpour, Hossein and Azavedo, Edward and Dembrower, Karin and Ntoula, Dimitra and Zouzos, Athanasios and Strand, Fredrik and Smith, Kevin},
  year={2021}
}

Questions or suggestions?

Please feel free to contact us in case you have any questions or suggestions!

Owner
Yue Liu
PhD student in deep learning at KTH.
Yue Liu
Patch-Diffusion Code (AAAI2022)

Patch-Diffusion This is an official PyTorch implementation of "Patch Diffusion: A General Module for Face Manipulation Detection" in AAAI2022. Require

H 7 Nov 02, 2022
Neural network pruning for finding a sparse computational model for controlling a biological motor task.

MothPruning Scientific Overview Originally inspired by biological nervous systems, deep neural networks (DNNs) are powerful computational tools for mo

Olivia Thomas 0 Dec 14, 2022
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE)

OG-SPACE Introduction Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE) is a computational framewo

Data and Computational Biology Group UNIMIB (was BI*oinformatics MI*lan B*icocca) 0 Nov 17, 2021
Keeper for Ricochet Protocol, implemented with Apache Airflow

Ricochet Keeper This repository contains Apache Airflow DAGs for executing keeper operations for Ricochet Exchange. Usage You will need to run this us

Ricochet Exchange 5 May 24, 2022
Python implementation of "Single Image Haze Removal Using Dark Channel Prior"

##Dependencies pillow(~2.6.0) Numpy(~1.9.0) If the scripts throw AttributeError: __float__, make sure your pillow has jpeg support e.g. try: $ sudo ap

Joyee Cheung 73 Dec 20, 2022
PyTorch Implementation of Spatially Consistent Representation Learning(SCRL)

Spatially Consistent Representation Learning (CVPR'21) Official PyTorch implementation of Spatially Consistent Representation Learning (SCRL). This re

Kakao Brain 102 Nov 03, 2022
A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK

Pytorch-MBNet A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK Training To train a new model, please ru

46 Dec 28, 2022
Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks

Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks Contributions A novel pairwise feature LSP to extract structural

31 Dec 06, 2022
PyTorch implementation of CloudWalk's recent work DenseBody

densebody_pytorch PyTorch implementation of CloudWalk's recent paper DenseBody. Note: For most recent updates, please check out the dev branch. Update

Lingbo Yang 401 Nov 19, 2022
DANA paper supplementary materials

DANA Supplements This repository stores the data, results, and R scripts to generate these reuslts and figures for the corresponding paper Depth Norma

0 Dec 17, 2021
This project helps to colorize grayscale images using multiple exemplars.

Multiple Exemplar-based Deep Colorization (Pytorch Implementation) Pretrained Model [Jitendra Chautharia](IIT Jodhpur)1,3, Prerequisites Python 3.6+ N

jitendra chautharia 3 Aug 05, 2022
Forecasting for knowable future events using Bayesian informative priors (forecasting with judgmental-adjustment).

What is judgyprophet? judgyprophet is a Bayesian forecasting algorithm based on Prophet, that enables forecasting while using information known by the

AstraZeneca 56 Oct 26, 2022
A curated list of awesome resources combining Transformers with Neural Architecture Search

A curated list of awesome resources combining Transformers with Neural Architecture Search

Yash Mehta 173 Jan 03, 2023
Code for the KDD 2021 paper 'Filtration Curves for Graph Representation'

Filtration Curves for Graph Representation This repository provides the code from the KDD'21 paper Filtration Curves for Graph Representation. Depende

Machine Learning and Computational Biology Lab 16 Oct 16, 2022
ELSED: Enhanced Line SEgment Drawing

ELSED: Enhanced Line SEgment Drawing This repository contains the source code of ELSED: Enhanced Line SEgment Drawing the fastest line segment detecto

Iago Suárez 125 Dec 31, 2022
blind SQLIpy sebuah alat injeksi sql yang menggunakan waktu sql untuk mendapatkan sebuah server database.

blind SQLIpy Alat blind SQLIpy ini merupakan alat injeksi sql yang menggunakan metode time based blind sql injection metode tersebut membutuhkan waktu

Galih Anggoro Prasetya 4 Feb 24, 2022
ComputerVision - This repository aims at realized easy network architecture

ComputerVision This repository aims at realized easy network architecture Colori

DongDong 4 Dec 14, 2022
FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI

FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI 声明: 本项目仅限于学习交流,不可用于非法用途,包括但不限于:用于游戏外挂等,使用本项目产生的任何后果与本人无关! 简介 本项目基于yolov5,实现了一款FPS类游戏(CF、CSGO等)的自瞄AI,本项目旨在使用现

Fabian 246 Dec 28, 2022
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022