[NeurIPS 2021]: Are Transformers More Robust Than CNNs? (Pytorch implementation & checkpoints)

Overview

Are Transformers More Robust Than CNNs?

Pytorch implementation for NeurIPS 2021 Paper: Are Transformers More Robust Than CNNs?

Our implementation is based on DeiT.

Introduction

Transformer emerges as a powerful tool for visual recognition. In addition to demonstrating competitive performance on a broad range of visual benchmarks, recent works also argue that Transformers are much more robust than Convolutions Neural Networks (CNNs). Nonetheless, surprisingly, we find these conclusions are drawn from unfair experimental settings, where Transformers and CNNs are compared at different scales and are applied with distinct training frameworks. In this paper, we aim to provide the first fair & in-depth comparisons between Transformers and CNNs, focusing on robustness evaluations.

With our unified training setup, we first challenge the previous belief that Transformers outshine CNNs when measuring adversarial robustness. More surprisingly, we find CNNs can easily be as robust as Transformers on defending against adversarial attacks, if they properly adopt Transformers' training recipes. While regarding generalization on out-of-distribution samples, we show pre-training on (external) large-scale datasets is not a fundamental request for enabling Transformers to achieve better performance than CNNs. Moreover, our ablations suggest such stronger generalization is largely benefited by the Transformer's self-attention-like architectures per se, rather than by other training setups. We hope this work can help the community better understand and benchmark the robustness of Transformers and CNNs.

Pretrained models

We provide both pretrained vanilla models and adversarially trained models.

Vanilla Training

Main Results

Pretrained Model ImageNet ImageNet-A ImageNet-C Stylized-ImageNet
Res50-Ori download link 76.9 3.2 57.9 8.3
Res50-Align download link 76.3 4.5 55.6 8.2
Res50-Best download link 75.7 6.3 52.3 10.8
DeiT-Small download link 76.8 12.2 48.0 13.0

Model Size

ResNets:

  • ResNets fully aligned (with DeiT's training recipe) model, denoted as res*:
Model Size Pretrained Model ImageNet ImageNet-A ImageNet-C Stylized-ImageNet
Res18* 11.69M download link 67.83 1.92 64.14 7.92
Res50* 25.56M download link 76.28 4.53 55.62 8.17
Res101* 44.55M download link 77.97 8.84 49.19 11.60
  • ResNets best model (for Out-of-Distribution (OOD) generalization), denoted as res-best:
Model Size Pretrained Model ImageNet ImageNet-A ImageNet-C Stylized-ImageNet
Res18-best 11.69M download link 66.81 2.03 62.65 9.45
Res50-best 25.56M download link 75.74 6.32 52.25 10.77
Res101-best 44.55M download link 77.83 11.49 47.35 13.28

DeiTs:

Model Size Pretrained Model ImageNet ImageNet-A ImageNet-C Stylized-ImageNet
DeiT-Mini 9.98M download link 72.89 8.19 54.68 9.88
DeiT-Small 22.05M download link 76.82 12.21 47.99 12.98

Model Distillation

Architecture Pretrained Model ImageNet ImageNet-A ImageNet-C Stylized-ImageNet
Teacher DeiT-Small download link 76.8 12.2 48.0 13.0
Student Res50*-Distill download link 76.7 5.2 54.2 9.8
Teacher Res50* download link 76.3 4.5 55.6 8.2
Student DeiT-S-Distill download link 76.2 10.9 49.3 11.9

Adversarial Training

Pretrained Model Clean Acc PGD-100 Auto Attack
Res50-ReLU download link 66.77 32.26 26.41
Res50-GELU download link 67.38 40.27 35.51
DeiT-Small download link 66.50 40.32 35.50

Vanilla Training

Data preparation

Download and extract ImageNet train and val images from http://image-net.org/. The directory structure is the standard layout for the torchvision, and the training and validation data is expected to be in the train folder and val folder respectively:

/path/to/imagenet/
  train/
    class1/
      img1.jpeg
    class2/
      img2.jpeg
  val/
    class1/
      img3.jpeg
    class/2
      img4.jpeg

Environment

Install dependencies:

pip3 install -r requirements.txt

Training Scripts

To train a ResNet model on ImageNet run:

bash script/res.sh

To train a DeiT model on ImageNet run:

bash script/deit.sh

Generalization to Out-of-Distribution Sample

Data Preparation

Download and extract ImageNet-A, ImageNet-C, Stylized-ImageNet val images:

/path/to/datasets/
  val/
    class1/
      img1.jpeg
    class/2
      img2.jpeg

Evaluation Scripts

To evaluate pre-trained models, run:

bash script/generation_to_ood.sh

It is worth noting that for ImageNet-C evaluation, the error rate is calculated based on the Noise, Blur, Weather and Digital categories.

Adversarial Training

To perform adversarial training on ResNet run:

bash script/advres.sh

To do adversarial training on DeiT run:

bash scripts/advdeit.sh

Robustness to Adversarial Example

PGD Attack Evaluation

To evaluate the pre-trained models, run:

bash script/eval_advtraining.sh

AutoAttack Evaluation

./autoattack contains the AutoAttack public package, with a little modification to best support ImageNet evaluation.

cd autoattack/
bash autoattack.sh

Patch Attack Evaluation

Please refer to PatchAttack

Citation

If you use our code, models or wish to refer to our results, please use the following BibTex entry:

@inproceedings{bai2021transformers,
  title     = {Are Transformers More Robust Than CNNs?},
  author    = {Bai, Yutong and Mei, Jieru and Yuille, Alan and Xie, Cihang},
  booktitle = {Thirty-Fifth Conference on Neural Information Processing Systems},
  year      = {2021},
}
Owner
Yutong Bai
CS Ph.D student @ JHU, CCVL
Yutong Bai
An investigation project for SISR.

SISR-Survey An investigation project for SISR. This repository is an official project of the paper "From Beginner to Master: A Survey for Deep Learnin

Juncheng Li 79 Oct 20, 2022
Tensors and Dynamic neural networks in Python with strong GPU acceleration

PyTorch is a Python package that provides two high-level features: Tensor computation (like NumPy) with strong GPU acceleration Deep neural networks b

61.4k Jan 04, 2023
Python library containing BART query generation and BERT-based Siamese models for neural retrieval.

Neural Retrieval Embedding-based Zero-shot Retrieval through Query Generation leverages query synthesis over large corpuses of unlabeled text (such as

Amazon Web Services - Labs 35 Apr 14, 2022
Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Muhammad Maaz 206 Jan 04, 2023
Spherical Confidence Learning for Face Recognition, accepted to CVPR2021.

Sphere Confidence Face (SCF) This repository contains the PyTorch implementation of Sphere Confidence Face (SCF) proposed in the CVPR2021 paper: Shen

Maths 70 Dec 09, 2022
Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Intelligent Robotics and Machine Vision Lab 4 Jul 19, 2022
C3D is a modified version of BVLC caffe to support 3D ConvNets.

C3D C3D is a modified version of BVLC caffe to support 3D convolution and pooling. The main supporting features include: Training or fine-tuning 3D Co

Meta Archive 1.1k Nov 14, 2022
PyTorch experiments with the Zalando fashion-mnist dataset

zalando-pytorch PyTorch experiments with the Zalando fashion-mnist dataset Project Organization ├── LICENSE ├── Makefile - Makefile with co

Federico Baldassarre 31 Sep 25, 2021
Single Image Deraining Using Bilateral Recurrent Network (TIP 2020)

Single Image Deraining Using Bilateral Recurrent Network Introduction Single image deraining has received considerable progress based on deep convolut

23 Aug 10, 2022
This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

OpenVINO Inference API This is a repository for an object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operati

BMW TechOffice MUNICH 68 Nov 24, 2022
Disentangled Face Attribute Editing via Instance-Aware Latent Space Search, accepted by IJCAI 2021.

Instance-Aware Latent-Space Search This is a PyTorch implementation of the following paper: Disentangled Face Attribute Editing via Instance-Aware Lat

67 Dec 21, 2022
Tensorflow Implementation of ECCV'18 paper: Multimodal Human Motion Synthesis

MT-VAE for Multimodal Human Motion Synthesis This is the code for ECCV 2018 paper MT-VAE: Learning Motion Transformations to Generate Multimodal Human

Xinchen Yan 36 Oct 02, 2022
Calling Julia from Python - an experiment on data loading

Calling Julia from Python - an experiment on data loading See the slides. TLDR After reading Patrick's blog post, we decided to try to replace C++ wit

Abel Siqueira 8 Jun 07, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
Code for Referring Image Segmentation via Cross-Modal Progressive Comprehension, CVPR2020.

CMPC-Refseg Code of our CVPR 2020 paper Referring Image Segmentation via Cross-Modal Progressive Comprehension. Shaofei Huang*, Tianrui Hui*, Si Liu,

spyflying 55 Dec 01, 2022
Get started with Machine Learning with Python - An introduction with Python programming examples

Machine Learning With Python Get started with Machine Learning with Python An engaging introduction to Machine Learning with Python TL;DR Download all

Learn Python with Rune 130 Jan 02, 2023
official implementation for the paper "Simplifying Graph Convolutional Networks"

Simplifying Graph Convolutional Networks Updates As pointed out by #23, there was a subtle bug in our preprocessing code for the reddit dataset. After

Tianyi 727 Jan 01, 2023
Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning.

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive

<a href=[email protected](SZ)"> 7 Dec 16, 2021
Memory Efficient Attention (O(sqrt(n)) for Jax and PyTorch

Memory Efficient Attention This is unofficial implementation of Self-attention Does Not Need O(n^2) Memory for Jax and PyTorch. Implementation is almo

Amin Rezaei 126 Dec 27, 2022
Cache Requests in Deta Bases and Echo them with Deta Micros

Deta Echo Cache Leverage the awesome Deta Micros and Deta Base to cache requests and echo them as needed. Stop worrying about slow public APIs or agre

Gingerbreadfork 8 Dec 07, 2021