Post-training Quantization for Neural Networks with Provable Guarantees

Overview

Post-training Quantization for Neural Networks with Provable Guarantees

Authors: Jinjie Zhang ([email protected]), Yixuan Zhou ([email protected]) and Rayan Saab ([email protected])

Overview

This directory contains code necessary to run a post-training neural-network quantization method GPFQ, that is based on a greedy path-following mechanism. One can also use it to reproduce the experiment results in our paper "Post-training Quantization for Neural Networks with Provable Guarantees". In this paper, we also prove theoretical guarantees for the proposed method, that is, for quantizing a single-layer network, the relative square error essentially decays linearly in the number of weights – i.e., level of over-parametrization.

If you make use of this code or our quantization method in your work, please cite the following paper:

 @article{zhang2022posttraining,
     author = {Zhang, Jinjie and Zhou, Yixuan and Saab, Rayan},
     title = {Post-training Quantization for Neural Networks with Provable Guarantees},
     booktitle = {arXiv preprint arXiv:2201.11113},
     year = {2022}
   }

Note: The code is designed to work primarily with the ImageNet dataset. Due to the size of this dataset, it is likely one may need heavier computational resources than a local machine. Nevertheless, the experiments can be run, for example, using a cloud computation center, e.g. AWS. When we run this experiment, we use the m5.8xlarge EC2 instance with a disk space of 300GB.

Installing Dependencies

We assume a python version that is greater than 3.8.0 is installed in the user's machine. In the root directory of this repo, we provide a requirements.txt file for installing the python libraries that will be used in our code.

To install the necessary dependency, one can first start a virtual environment by doing the following:

python3 -m venv .venv
source .venv/bin/activate

The code above should activate a new python virtual environments.

Then one can make use of the requirements.txt by

pip3 install -r requirement.txt

This should install all the required dependencies of this project.

Obtaining ImageNet Dataset

In this project, we make use of the Imagenet dataset, in particular, we use the ILSVRC-2012 version.

To obtain the Imagenet dataset, one can submit a request through this link.

Once the dataset is obtained, place the .tar files for training set and validation set both under the data/ILSVRC2012 directory of this repo.

Then use the following procedure to unzip Imagenet dataset:

tar -xvf ILSVRC2012_img_train.tar && rm -f ILSVRC2012_img_train.tar
find . -name "*.tar" | while read NAME ; do mkdir -p "${NAME%.tar}"; tar -xvf "${NAME}" -C "${NAME%.tar}"; rm -f "${NAME}"; done
cd ..
# Extract the validation data and move images to subfolders:
tar -xvf ILSVRC2012_img_val.tar

Running Experiments

The implementation of the modified GPFQ in our paper is contained in quantization_scripts. Additionally, adhoc_quantization_scripts and retraining_scripts provide extra experiments and both of them are variants of the framework in quantization_scripts. adhoc_quantization_scripts contains heuristic modifications used to further improve the performance of GPFQ, such as bias correction, mixed precision, and unquantizing the last layer. retraining_scripts shows a quantization-aware training strategy that is designed to retrain the neural network after each layer is quantized.

In this section, we will give a guidance on running our code contained in quantization_scripts and the implementation of other two counterparts adhoc_quantization_scripts and retraining_scripts are very similar to quantization_scripts.

  1. Before getting started, run in the root directory of the repo and run mkdir modelsto create a directory in which we will store the quantized model.

  2. The entry point of the project starts with quantization_scripts/quantize.py. Once the file is opened, there is a section to set hyperparameters, for example, the model_name parameter, the number of bits/batch size used for quantization, the scalar of alphabets, the probability for subsampling in CNNs etc. Note that the model_name mentioned above should be the same as the model that you will quantize. After you selected a model_name and assuming you are still in the root directory of this repo, run mkdir models/{model_name}, where the {model_name} should be the python string that you provided for the model_name parameter in the quantize.py file. If the directory already exists, you can skip this step.

  3. Then navigate to the logs directory and run python3 init_logs.py. This will prepare a log file which is used to store the results of the experiment.

  4. Finally, open the quantization_scripts directory and run python3 quantize.py to start the experiment.

Owner
Yixuan Zhou
3rd Year UCSD CS double Math undergrad.
Yixuan Zhou
Code for "LoRA: Low-Rank Adaptation of Large Language Models"

LoRA: Low-Rank Adaptation of Large Language Models This repo contains the implementation of LoRA in GPT-2 and steps to replicate the results in our re

Microsoft 394 Jan 08, 2023
Pairwise model for commonlit competition

Pairwise model for commonlit competition To run: - install requirements - create input directory with train_folds.csv and other competition data - cd

abhishek thakur 45 Aug 31, 2022
harmonic-percussive-residual separation algorithm wrapped as a VST3 plugin (iPlug2)

Harmonic-percussive-residual separation plug-in This work is a study on the plausibility of a sines-transients-noise decomposition inspired algorithm

Derp Learning 9 Sep 01, 2022
DLWP: Deep Learning Weather Prediction

DLWP: Deep Learning Weather Prediction DLWP is a Python project containing data-

Kushal Shingote 3 Aug 14, 2022
EgGateWayGetShell py脚本

EgGateWayGetShell_py 免责声明 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,作者不为此承担任何责任。 使用 python3 eg.py urls.txt 目标 title:锐捷网络-EWEB网管系统 port:4430 漏洞成因 ?p

榆木 61 Nov 09, 2022
Implementations of LSTM: A Search Space Odyssey variants and their training results on the PTB dataset.

An LSTM Odyssey Code for training variants of "LSTM: A Search Space Odyssey" on Fomoro. Check out the blog post. Training Install TensorFlow. Clone th

Fomoro AI 95 Apr 13, 2022
Official implementation of the ICLR 2021 paper

You Only Need Adversarial Supervision for Semantic Image Synthesis Official PyTorch implementation of the ICLR 2021 paper "You Only Need Adversarial S

Bosch Research 272 Dec 28, 2022
Cockpit is a visual and statistical debugger specifically designed for deep learning.

Cockpit: A Practical Debugging Tool for Training Deep Neural Networks

Felix Dangel 421 Dec 29, 2022
Gym for multi-agent reinforcement learning

PettingZoo is a Python library for conducting research in multi-agent reinforcement learning, akin to a multi-agent version of Gym. Our website, with

Farama Foundation 1.6k Jan 09, 2023
Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers

Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers This is an implementation of A Physics-Informed Vector Quantized Autoencoder for Dat

DreamSoul 3 Sep 12, 2022
An implementation of quantum convolutional neural network with MindQuantum. Huawei, classifying MNIST dataset

关于实现的一点说明 山东大学 2020级 苏博南 www.subonan.com 文件说明 tools.py 这里面主要有两个函数: resize(a, lenb) 这其实是我找同学写的一个小算法hhh。给出一个$28\times 28$的方阵a,返回一个$lenb\times lenb$的方阵。因

ぼっけなす 2 Aug 29, 2022
Super Resolution for images using deep learning.

Neural Enhance Example #1 — Old Station: view comparison in 24-bit HD, original photo CC-BY-SA @siv-athens. As seen on TV! What if you could increase

Alex J. Champandard 11.7k Dec 29, 2022
Deep Learning Based Fasion Recommendation System for Ecommerce

Project Name: Fasion Recommendation System for Ecommerce A Deep learning based streamlit web app which can recommened you various types of fasion prod

BAPPY AHMED 13 Dec 13, 2022
Pure python PEMDAS expression solver without using built-in eval function

pypemdas Pure python PEMDAS expression solver without using built-in eval function. Supports nested parenthesis. Supported operators: + - * / ^ Exampl

1 Dec 22, 2021
The GitHub repository for the paper: “Time Series is a Special Sequence: Forecasting with Sample Convolution and Interaction“.

SCINet This is the original PyTorch implementation of the following work: Time Series is a Special Sequence: Forecasting with Sample Convolution and I

386 Jan 01, 2023
PyTorch implementation of the TTC algorithm

Trust-the-Critics This repository is a PyTorch implementation of the TTC algorithm and the WGAN misalignment experiments presented in Trust the Critic

0 Nov 29, 2021
This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].

CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R

12 Oct 28, 2022
2D Time independent Schrodinger equation solver for arbitrary shape of well

Schrodinger Well Python Python solver for timeless Schrodinger equation for well with arbitrary shape https://imgur.com/a/jlhK7OZ Pictures of circular

WeightAn 24 Nov 18, 2022
Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently

Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently This repository is the official implementat

VITA 4 Dec 20, 2022
Dogs classification with Deep Metric Learning using some popular losses

Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo

QuocThangNguyen 45 Nov 09, 2022