A weakly-supervised scene graph generation codebase. The implementation of our CVPR2021 paper ``Linguistic Structures as Weak Supervision for Visual Scene Graph Generation''

Related tags

Deep LearningWSSGG
Overview

README.md shall be finished soon.

WSSGG

0 Overview

Our model uses the image's paired caption as weak supervision to learn the entities in the image and the relations among them. At inference time, it generates scene graphs without help from texts. To learn our model, we first allow context information to propagate on the text graph to enrich the entity word embeddings (Sec. 3.1). We found this enrichment provides better localization of the visual objects. Then, we optimize a text-query-guided attention model (Sec. 3.2) to provide the image-level entity prediction and associate the text entities with visual regions best describing them. We use the joint probability to choose boxes associated with both subject and object (Sec. 3.3), then use the top scoring boxes to learn better grounding (Sec. 3.4). Finally, we use an RNN (Sec. 3.5) to capture the vision-language common-sense and refine our predictions.

1 Installation

git clone "https://github.com/yekeren/WSSGG.git" && cd "WSSGG"

We use Tensorflow 1.5 and Python 3.6.4. To continue, please ensure that at least the correct Python version is installed. requirements.txt defines the list of python packages we installed. Simply run pip install -r requirements.txt to install these packages after setting up python. Next, run protoc protos/*.proto --python_out=. to compile the required protobuf protocol files, which are used for storing configurations.

pip install -r requirements.txt
protoc protos/*.proto --python_out=.

1.1 Faster-RCNN

Our Faster-RCNN implementation relies on the Tensorflow object detection API. Users can use git clone "https://github.com/tensorflow/models.git" "tensorflow_models" && ln -s "tensorflow_models/research/object_detection" to set up. Also, don't forget to using protoc to compire the protos used by the detection API.

The specific Faster-RCNN model we use is faster_rcnn_inception_resnet_v2_atrous_lowproposals_oidv2 to keep it the same as the VSPNet. More information is in Tensorflow object detection zoo.

git clone "https://github.com/tensorflow/models.git" "tensorflow_models" 
ln -s "tensorflow_models/research/object_detection"
cd tensorflow_models/research/; protoc object_detection/protos/*.proto --python_out=.; cd -

mkdir -p "zoo"
wget -P "zoo" "http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_resnet_v2_atrous_lowproposals_oid_2018_01_28.tar.gz"
tar xzvf zoo/faster_rcnn_inception_resnet_v2_atrous_lowproposals_oid_2018_01_28.tar.gz -C "zoo"

1.2 Language Parser

Though we indicate the dependency on spacy in requirements.txt, we still need to run python -m spacy download en for English. Then, we checkout the tool at SceneGraphParser by running git clone "https://github.com/vacancy/SceneGraphParser.git" && ln -s "SceneGraphParser/sng_parser"

python -m spacy download en
git clone "https://github.com/vacancy/SceneGraphParser.git"
ln -s "SceneGraphParser/sng_parser"

1.3 GloVe Embeddings

We use the pre-trained 300-D GloVe embeddings.

wget -P "zoo" "http://nlp.stanford.edu/data/glove.6B.zip"
unzip "zoo/glove.6B.zip" -d "zoo"

python "dataset-tools/export_glove_words_and_embeddings.py" \
  --glove_file "zoo/glove.6B.300d.txt" \
  --output_vocabulary_file "zoo/glove_word_tokens.txt" \
  --output_vocabulary_word_embedding_file "zoo/glove_word_vectors.npy"

2 Settings

To avoid the time-consuming Faster RCNN processes in 2.1 and 2.2, users can directly download the features we provided at the following URLs. Then, the scripts create_vg_settings.sh and create_coco_setting.sh will check the existense of the Faster-RCNN features and skip the processs if they are provided. Please note that in the following table, we assume the directory for holding the VG and COCO data to be vg-gt-cap and coco-cap.

Name URLs Please extract to directory
VG Faster-RCNN features https://storage.googleapis.com/weakly-supervised-scene-graphs-generation/vg_frcnn_proposals.zip vg-gt-cap/frcnn_proposals/
COCO Faster-RCNN features https://storage.googleapis.com/weakly-supervised-scene-graphs-generation/coco_frcnn_proposals.zip coco-cap/frcnn_proposals/

2.1 VG-GT-Graph and VG-Cap-Graph

Typing sh dataset-tools/create_vg_settings.sh "vg-gt-cap" will generate VG-related files under the folder "vg-gt-cap" (for both VG-GT-Graph and VG-Cap-Graph settings). Basically, it will download the datasets and launch the following programs under the dataset-tools directory.

Name Desc.
create_vg_frcnn_proposals.py Extract VG visual proposals using Faster-RCNN
create_vg_text_graphs.py Extract VG text graphs using Language Parser
create_vg_vocabulary Gather the VG vocabulary
create_vg_gt_graph_tf_record.py Generate TF record files for the VG-GT-Graph setting
create_vg_cap_graph_tf_record.py Generate TF record files for the VG-Cap-Graph setting

2.2 COCO-Cap-Graph

Typing sh dataset-tools/create_coco_settings.sh "coco-cap" "vg-gt-cap" will generate COCO-related files under the folder "coco-cap" (for COCO-Cap-Graph setting). Basically, it will download the datasets and launch the following programs under the dataset-tools directory. Please note that the "vg-gt-cap" directory should be created in that we need to get the split information (either Zareian et al. or Xu et al.).

Name Desc.
create_coco_frcnn_proposals.py Extract COCO visual proposals using Faster-RCNN
create_coco_text_graphs.py Extract COCO text graphs using Language Parser
create_coco_vocabulary Gather the COCO vocabulary
create_coco_cap_graph_tf_record.py Generate TF record files for the COCO-Cap-Graph setting

3 Training and Evaluation

Multi-GPUs (5 GPUs in our case) training cost less than 2.5 hours to train a single model, while single-GPU strategy requires more than 8 hours.

3.1 Multi-GPUs training

We use TF distributed training to train the models shown in our paper. For example, the following command shall create and train a model specified by the proto config file configs/GT-Graph-Zareian/base_phr_ite_seq.pbtxt, and save the trained model to a directory named "logs/base_phr_ite_seq". In train.sh, we create 1 ps, 1, chief, 3 workers, and 1 evaluator. The 6 instances are distributed on 5 GPUS (4 for training and 1 for evaluation).

sh train.sh \
  "configs/GT-Graph-Zareian/base_phr_ite_seq.pbtxt" \
  "logs/base_phr_ite_seq"

3.2 Single-GPU training

Our model can also be trained using single GPU strategy such as follow. However, we would suggest to half the learning rate or explore for better other hyper-parameters.

python "modeling/trainer_main.py" \
  --pipeline_proto "configs/GT-Graph-Zareian/base_phr_ite_seq.pbtxt" \
  --model_dir ""logs/base_phr_ite_seq""

3.3 Performance on test set

During the training process, there is an evaluator measuring the model's performance on the validation set and save the best model checkpoint. Finally, we use the following command to evaluate the saved model's performance on the test set. This evaluation process will last for 2-3 hours depends on the post-process parameters (e.g., see here). Currently, there are many kinds of stuff written in pure python, which we would later optimize to utilize GPU better to reduce the final evaluation time.

python "modeling/trainer_main.py" \
  --pipeline_proto "configs/GT-Graph-Zareian/base_phr_ite_seq.pbtxt" \
  --model_dir ""logs/base_phr_ite_seq"" \
  --job test

3.4 Primary configs and implementations

Take configs/GT-Graph-Zareian/base_phr_ite_seq.pbtxt as an example, the following configs control the model's behavior.

Name Desc. Impl.
linguistic_options Specify the phrasal context modeling, remove the section to disable it. models/cap2sg_linguistic.py
grounding_options Specify the grounding options. models/cap2sg_grounding.py
detection_options Specify the WSOD model, num_iterations to control the iterative process. models/cap2sg_detection.py
relation_options Specify the relation detection modeling. models/cap2sg_relation.py
common_sense_options Specify the sequential context modeling, remove the section to disable it. models/cap2sg_common_sense.py

4 Visualization

Please see cap2sg.ipynb.

5 Reference

If you find this project helps, please cite our CVPR2021 paper :)

@InProceedings{Ye_2021_CVPR,
  author = {Ye, Keren and Kovashka, Adriana},
  title = {Linguistic Structures as Weak Supervision for Visual Scene Graph Generation},
  booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {June},
  year = {2021}
}

Also, please take a look at our old work in ICCV2019.

@InProceedings{Ye_2019_ICCV,
  author = {Ye, Keren and Zhang, Mingda and Kovashka, Adriana and Li, Wei and Qin, Danfeng and Berent, Jesse},
  title = {Cap2Det: Learning to Amplify Weak Caption Supervision for Object Detection},
  booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  month = {October},
  year = {2019}
}
Owner
Keren Ye
Ph.D. student at the University of Pittsburgh. I am interested in both Computer Vision and Natural Language Processing.
Keren Ye
MultiTaskLearning - Multi Task Learning for 3D segmentation

Multi Task Learning for 3D segmentation Perception stack of an Autonomous Drivin

2 Sep 22, 2022
【steal piano】GitHub偷情分析工具!

【steal piano】GitHub偷情分析工具! 你是否有这样的困扰,有一天你的仓库被很多人加了star,但是你却不知道这些人都是从哪来的? 别担心,GitHub偷情分析工具帮你轻松解决问题! 原理 GitHub偷情分析工具透过分析star的时间以及他们之间的follow关系,可以推测出每个st

黄巍 442 Dec 21, 2022
Instance-based label smoothing for improving deep neural networks generalization and calibration

Instance-based Label Smoothing for Neural Networks Pytorch Implementation of the algorithm. This repository includes a new proposed method for instanc

Mohamed Maher 1 Aug 13, 2022
Pytorch implementation of MixNMatch

MixNMatch: Multifactor Disentanglement and Encoding for Conditional Image Generation [Paper] Yuheng Li, Krishna Kumar Singh, Utkarsh Ojha, Yong Jae Le

910 Dec 30, 2022
VOS: Learning What You Don’t Know by Virtual Outlier Synthesis

VOS This is the source code accompanying the paper VOS: Learning What You Don’t

248 Dec 25, 2022
HyperaPy: An automatic hyperparameter optimization framework ⚡🚀

hyperpy HyperPy: An automatic hyperparameter optimization framework Description HyperPy: Library for automatic hyperparameter optimization. Build on t

Sergio Mora 7 Sep 06, 2022
The story of Chicken for Club Bing

Chicken Story tl;dr: The time when Microsoft banned my entire country for cheating at Club Bing. (A lot of the details are from memory so I've recreat

Eyal 142 May 16, 2022
[ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing

NeRFlow [ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing Datasets The pouring dataset used for experiments can be download he

44 Dec 20, 2022
Automatic meme generation model using Tensorflow Keras.

Memefly You can find the project at MemeflyAI. Contributors Nick Buukhalter Harsh Desai Han Lee Project Overview Trello Board Product Canvas Automatic

BloomTech Labs 2 Jan 13, 2022
Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks.

The Lottery Ticket Hypothesis for Pre-trained BERT Networks Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks. [NeurIPS

VITA 122 Dec 14, 2022
A pytorch implementation of faster RCNN detection framework (Use detectron2, it's a masterpiece)

Notice(2019.11.2) This repo was built back two years ago when there were no pytorch detection implementation that can achieve reasonable performance.

Ruotian(RT) Luo 1.8k Jan 01, 2023
Learning Continuous Signed Distance Functions for Shape Representation

DeepSDF This is an implementation of the CVPR '19 paper "DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation" by Park et a

Meta Research 1.1k Jan 01, 2023
2.86% and 15.85% on CIFAR-10 and CIFAR-100

Shake-Shake regularization This repository contains the code for the paper Shake-Shake regularization. This arxiv paper is an extension of Shake-Shake

Xavier Gastaldi 294 Nov 22, 2022
Code for the paper Learning the Predictability of the Future

Learning the Predictability of the Future Code from the paper Learning the Predictability of the Future. Website of the project in hyperfuture.cs.colu

Computer Vision Lab at Columbia University 139 Nov 18, 2022
Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system

Recommender-Systems Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system So the data

Yash Kumar 0 Jan 20, 2022
Fortuitous Forgetting in Connectionist Networks

Fortuitous Forgetting in Connectionist Networks Introduction This repository includes reference code for the paper Fortuitous Forgetting in Connection

Hattie Zhou 14 Nov 26, 2022
CLIP2Video: Mastering Video-Text Retrieval via Image CLIP

CLIP2Video: Mastering Video-Text Retrieval via Image CLIP The implementation of paper CLIP2Video: Mastering Video-Text Retrieval via Image CLIP. CLIP2

168 Dec 29, 2022
Source code for the ACL-IJCNLP 2021 paper entitled "T-DNA: Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation" by Shizhe Diao et al.

T-DNA Source code for the ACL-IJCNLP 2021 paper entitled Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adapta

shizhediao 17 Dec 22, 2022
A PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-Supervised Learning Framework".

Mugs: A Multi-Granular Self-Supervised Learning Framework This is a PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-

Sea AI Lab 62 Nov 08, 2022
Resources for the Ki testnet challenge

Ki Testnet Challenge This repository hosts ki-testnet-challenge. A set of scripts and resources to be used for the Ki Testnet Challenge What is the te

Ki Foundation 23 Aug 08, 2022