Not Suitable for Work (NSFW) classification using deep neural network Caffe models.

Overview

Open nsfw model

This repo contains code for running Not Suitable for Work (NSFW) classification deep neural network Caffe models. Please refer our blog post which describes this work and experiments in more detail.

Not suitable for work classifier

Detecting offensive / adult images is an important problem which researchers have tackled for decades. With the evolution of computer vision and deep learning the algorithms have matured and we are now able to classify an image as not suitable for work with greater precision.

Defining NSFW material is subjective and the task of identifying these images is non-trivial. Moreover, what may be objectionable in one context can be suitable in another. For this reason, the model we describe below focuses only on one type of NSFW content: pornographic images. The identification of NSFW sketches, cartoons, text, images of graphic violence, or other types of unsuitable content is not addressed with this model.

Since images and user generated content dominate the internet today, filtering nudity and other not suitable for work images becomes an important problem. In this repository we opensource a Caffe deep neural network for preliminary filtering of NSFW images.

Demo Image

Usage

  • The network takes in an image and gives output a probability (score between 0-1) which can be used to filter not suitable for work images. Scores < 0.2 indicate that the image is likely to be safe with high probability. Scores > 0.8 indicate that the image is highly probable to be NSFW. Scores in middle range may be binned for different NSFW levels.
  • Depending on the dataset, usecase and types of images, we advise developers to choose suitable thresholds. Due to difficult nature of problem, there will be errors, which depend on use-cases / definition / tolerance of NSFW. Ideally developers should create an evaluation set according to the definition of what is safe for their application, then fit a ROC curve to choose a suitable threshold if they are using the model as it is.
  • Results can be improved by fine-tuning the model for your dataset/ use case / definition of NSFW. We do not provide any guarantees of accuracy of results. Please read the disclaimer below.
  • Using human moderation for edge cases in combination with the machine learned solution will help improve performance.

Description of model

We trained the model on the dataset with NSFW images as positive and SFW(suitable for work) images as negative. These images were editorially labelled. We cannot release the dataset or other details due to the nature of the data.

We use CaffeOnSpark which is a wonderful framework for distributed learning that brings deep learning to Hadoop and Spark clusters for training models for our experiments. Big thanks to the CaffeOnSpark team!

The deep model was first pretrained on ImageNet 1000 class dataset. Then we finetuned the weights on the NSFW dataset. We used the thin resnet 50 1by2 architecture as the pretrained network. The model was generated using pynetbuilder tool and replicates the residual network paper's 50 layer network (with half number of filters in each layer). You can find more details on how the model was generated and trained here

Please note that deeper networks, or networks with more filters can improve accuracy. We train the model using a thin residual network architecture, since it provides good tradeoff in terms of accuracy, and the model is light-weight in terms of runtime (or flops) and memory (or number of parameters).

Docker Quickstart

This Docker quickstart guide can be used for evaluating the model quickly with minimal dependency installation.

Install Docker Engine

Build a caffe docker image (CPU)

docker build -t caffe:cpu https://raw.githubusercontent.com/BVLC/caffe/master/docker/cpu/Dockerfile

Check the caffe installation

docker run caffe:cpu caffe --version
caffe version 1.0.0-rc3

Run the docker image with a volume mapped to your open_nsfw repository. Your test_image.jpg should be located in this same directory.

cd open_nsfw
docker run --volume=$(pwd):/workspace caffe:cpu \
python ./classify_nsfw.py \
--model_def nsfw_model/deploy.prototxt \
--pretrained_model nsfw_model/resnet_50_1by2_nsfw.caffemodel \
test_image.jpg

We will get the NSFW score returned:

NSFW score:   0.14057905972

Running the model

To run this model, please install Caffe and its python extension and make sure pycaffe is available in your PYTHONPATH.

We can use the classify.py script to run the NSFW model. For convenience, we have provided the script in this repo as well, and it prints the NSFW score.

python ./classify_nsfw.py \
--model_def nsfw_model/deploy.prototxt \
--pretrained_model nsfw_model/resnet_50_1by2_nsfw.caffemodel \
INPUT_IMAGE_PATH 

Disclaimer

The definition of NSFW is subjective and contextual. This model is a general purpose reference model, which can be used for the preliminary filtering of pornographic images. We do not provide guarantees of accuracy of output, rather we make this available for developers to explore and enhance as an open source project. Results can be improved by fine-tuning the model for your dataset.

License

Code licensed under the [BSD 2 clause license] (https://github.com/BVLC/caffe/blob/master/LICENSE). See LICENSE file for terms.

Contact

The model was trained by Jay Mahadeokar, in collaboration with Sachin Farfade , Amar Ramesh Kamat, Armin Kappeler and others. Special thanks to Gerry Pesavento for taking the initiative for open-sourcing this model. If you have any queries, please raise an issue and we will get back ASAP.

Owner
Yahoo
This organization is the home to many of the active open source projects published by engineers at Yahoo Inc.
Yahoo
A large-image collection explorer and fast classification tool

IMAX: Interactive Multi-image Analysis eXplorer This is an interactive tool for visualize and classify multiple images at a time. It written in Python

Matias Carrasco Kind 23 Dec 16, 2022
Study of human inductive biases in CNNs and Transformers.

Are Convolutional Neural Networks or Transformers more like human vision? This repository contains the code and fine-tuned models of popular Convoluti

Shikhar Tuli 39 Dec 08, 2022
Implementation of SegNet: A Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-Wise Labelling

Caffe SegNet This is a modified version of Caffe which supports the SegNet architecture As described in SegNet: A Deep Convolutional Encoder-Decoder A

Alex Kendall 1.1k Jan 02, 2023
Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning"

CMSF Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning" Requirements Python = 3.7.6 PyTorch

4 Nov 25, 2022
Neural network graphs and training metrics for PyTorch, Tensorflow, and Keras.

HiddenLayer A lightweight library for neural network graphs and training metrics for PyTorch, Tensorflow, and Keras. HiddenLayer is simple, easy to ex

Waleed 1.7k Dec 31, 2022
Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport

Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport This GitHub page provides code for reproducing the results i

Andrew Zammit Mangion 1 Nov 08, 2021
An Active Automata Learning Library Written in Python

AALpy An Active Automata Learning Library AALpy is a light-weight active automata learning library written in pure Python. You can start learning auto

TU Graz - SAL Dependable Embedded Systems Lab (DES Lab) 78 Dec 30, 2022
Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models

Python scripts to detect faces using Python with the BlazeFace Tensorflow Lite models. Tested on Windows 10, Tensorflow 2.4.0 (Python 3.8).

Ibai Gorordo 46 Nov 17, 2022
Official implementation of EfficientPose

EfficientPose This is the official implementation of EfficientPose. We based our work on the Keras EfficientDet implementation xuannianz/EfficientDet

2 May 17, 2022
Official PyTorch implementation of "BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation" (NeurIPS 2021)

BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation Official PyTorch implementation of the NeurIPS 2021 paper Mingcong Liu, Qiang

onion 462 Dec 29, 2022
Deep learning library featuring a higher-level API for TensorFlow.

TFLearn: Deep learning library featuring a higher-level API for TensorFlow. TFlearn is a modular and transparent deep learning library built on top of

TFLearn 9.6k Jan 02, 2023
[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning This is the Tensorflow implementation of ICLR 2021 paper Rank the Episo

Daochen Zha 48 Nov 21, 2022
Code for our CVPR2021 paper coordinate attention

Coordinate Attention for Efficient Mobile Network Design (preprint) This repository is a PyTorch implementation of our coordinate attention (will appe

Qibin (Andrew) Hou 726 Jan 05, 2023
PyTorch implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN in PyTorch PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. * All samples in READM

Taehoon Kim 1k Jan 04, 2023
Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th place solution

Lyft Motion Prediction for Autonomous Vehicles Code for the 4th place solution of Lyft Motion Prediction for Autonomous Vehicles on Kaggle. Discussion

44 Jun 27, 2022
A Real-Time-Strategy game for Deep Learning research

Description DeepRTS is a high-performance Real-TIme strategy game for Reinforcement Learning research. It is written in C++ for performance, but provi

Centre for Artificial Intelligence Research (CAIR) 156 Dec 19, 2022
Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds."

DeltaConv [Paper] [Project page] Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds" by Ru

98 Nov 26, 2022
This is the research repository for Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition.

Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition This is the research repository for Vid2

Future Interfaces Group (CMU) 26 Dec 24, 2022
上海交通大学全自动抢课脚本,支持准点开抢与抢课后持续捡漏两种模式。2021/06/08更新。

Welcome to Course-Bullying-in-SJTU-v3.1! 2021/6/8 紧急更新v3.1 更新说明 为了更好地保护用户隐私,将原来用户名+密码的登录方式改为微信扫二维码+cookie登录方式,不再需要配置使用pytesseract。在使用扫码登录模式时,请稍等,二维码将马

87 Sep 13, 2022
PyTorch implementation of MICCAI 2018 paper "Liver Lesion Detection from Weakly-labeled Multi-phase CT Volumes with a Grouped Single Shot MultiBox Detector"

Grouped SSD (GSSD) for liver lesion detection from multi-phase CT Note: the MICCAI 2018 paper only covers the multi-phase lesion detection part of thi

Sang-gil Lee 36 Oct 12, 2022