Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Related tags

Deep LearningURN
Overview

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Introduction

This is a PyTorch implementation of Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation (AAAI2022), based on mmsegmentation. Please refer the classification phase to PMM and refer the segmentation phase to WSSS_MMSeg.

In this papper, we mitigate the noise of pseudo-mask in segmentation phase via uncertainty from response scaling which simulates the behavior of noise. This technique is applicable to all weakly-supervised semantic segmentation methods based on fully-supervised semantic segmentation.

Uncertainty visualization uncertainty visualization

Framework visualization framework visualization

Preparation

(Extract code of BaiduYun: mtci)

Datasets and pretrained weights

VOC12 OneDrive, BaiduYun; COCO14 BaiduYun; Pretrained weights OneDrive, BaiduYun

Pseduo-masks from classification phase

Pseudo-masks (if you want to skip cls phase), VOC12 OneDrive, COCO14 BaiduYun

Intermediate segmentation weights for uncertainty and cyclic pseudo-mask

Intermediate weights (if you want to skip first segmentation), BaiduYun

Released segmentation weights for test and visualization

Released weights, BaiduYun

Once downloaded, execute the following commands to link the datasets and weights.

git clone https://github.com/XMed-Lab/URN.git
cd URN
mkdir data
cd  data
ln -s [path to model files] models
ln -s [path to voc12] voc12
ln -s [path to coco2014] coco2014
ln -s [path to your voc pseudo-mask] voc12/VOC2012/ppmg
ln -s [path to your coco pseudo-mask] coco2014/voc_format/ppmg

Run the code

(If you don't run on server cluster based on srun, please modify the scripts "tools/dist_*.sh" refer to given scripts "tools/srun_*.sh")

Installation
cd URN
pip install mmcv==1.1.5
pip install -e .

(If you meet installation problems, please refer to mmsegmentation)

Train segmentation for the first time (you can skip it by intermediate weights)
cd URN
bash tools/slurm_train.sh [cluster partition] python configs/pspnet_wsss/pspnet_res2net_20k_voc12aug_pus.py work_dirs/voc12_r2n_pus 8
Uncertainty estimation and generate cyclic pseudo-mask
bash tools/slurm_test.sh [cluster partition] python configs/pspnet_wsss/pspnet_res2net_20k_voc12aug_uncertainty.py [intermediate weights] 8
Train segmentation with reweight strategy
bash tools/slurm_train.sh [cluster partition] python configs/pspnet_wsss/pspnet_res2net_20k_voc12aug_urn.py work_dirs/voc12_r2n_urn 8
Notes:
  1. We provide other backbones, including ResNet101, ScaleNet101, Wide-ResNet38
  2. Configs of COCO14 are provided in "configs/pspnet_wsss"
  3. It's suggested to use multiple cluster nodes to accelerate the genetation of pseudo-mask when use "tools/slurm_test.sh"
  4. Run "tools/run_pmm.sh" to get baselines of PMM

License

Please refer to: LICENSE.

Owner
XMed-Lab
Medical AI and Computer Vision Group, HKUST
XMed-Lab
PyTorch trainer and model for Sequence Classification

PyTorch-trainer-and-model-for-Sequence-Classification After cloning the repository, modify your training data so that the training data is a .csv file

NhanTieu 2 Dec 09, 2022
Segmentation vgg16 fcn - cityscapes

VGGSegmentation Segmentation vgg16 fcn - cityscapes Priprema skupa skripta prepare_dataset_downsampled.py Iz slika cityscapesa izrezuje haubu automobi

6 Oct 24, 2020
This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine

LSHTM_RCS This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine (LSHTM) in collabo

Lukas Kopecky 3 Jan 30, 2022
Implementation of the Swin Transformer in PyTorch.

Swin Transformer - PyTorch Implementation of the Swin Transformer architecture. This paper presents a new vision Transformer, called Swin Transformer,

597 Jan 03, 2023
Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker

Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker This repository contai

Nikita 12 Dec 14, 2022
Virtual hand gesture mouse using a webcam

NonMouse 日本語のREADMEはこちら This is an application that allows you to use your hand itself as a mouse. The program uses a web camera to recognize your han

Yuki Takeyama 55 Jan 01, 2023
A new GCN model for Point Cloud Analyse

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for VA-GCN in pytorch. Classification (ModelNet10/40) Data Preparation D

12 Feb 02, 2022
Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease

Heart_Disease_Classification Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease Dataset

Ashish 1 Jan 30, 2022
Pytorch implementation of forward and inverse Haar Wavelets 2D

Pytorch implementation of forward and inverse Haar Wavelets 2D

Sergei Belousov 9 Oct 30, 2022
[CVPR 2022] Thin-Plate Spline Motion Model for Image Animation.

[CVPR2022] Thin-Plate Spline Motion Model for Image Animation Source code of the CVPR'2022 paper "Thin-Plate Spline Motion Model for Image Animation"

yoyo-nb 1.4k Dec 30, 2022
TorchFlare is a simple, beginner-friendly, and easy-to-use PyTorch Framework train your models effortlessly.

TorchFlare TorchFlare is a simple, beginner-friendly and an easy-to-use PyTorch Framework train your models without much effort. It provides an almost

Atharva Phatak 85 Dec 26, 2022
Weakly-supervised object detection.

Wetectron Wetectron is a software system that implements state-of-the-art weakly-supervised object detection algorithms. Project CVPR'20, ECCV'20 | Pa

NVIDIA Research Projects 342 Jan 05, 2023
Code for Max-Margin Contrastive Learning - AAAI 2022

Max-Margin Contrastive Learning This is a pytorch implementation for the paper Max-Margin Contrastive Learning accepted to AAAI 2022. This repository

Anshul Shah 12 Oct 22, 2022
YOLOV4运行在嵌入式设备上

在嵌入式设备上实现YOLO V4 tiny 在嵌入式设备上实现YOLO V4 tiny 目录结构 目录结构 |-- YOLO V4 tiny |-- .gitignore |-- LICENSE |-- README.md |-- test.txt |-- t

Liu-Wei 6 Sep 09, 2021
High-quality implementations of standard and SOTA methods on a variety of tasks.

Uncertainty Baselines The goal of Uncertainty Baselines is to provide a template for researchers to build on. The baselines can be a starting point fo

Google 1.1k Dec 30, 2022
As a part of the HAKE project, includes the reproduced SOTA models and the corresponding HAKE-enhanced versions (CVPR2020).

HAKE-Action HAKE-Action (TensorFlow) is a project to open the SOTA action understanding studies based on our Human Activity Knowledge Engine. It inclu

Yong-Lu Li 94 Nov 18, 2022
code for the ICLR'22 paper: On Robust Prefix-Tuning for Text Classification

On Robust Prefix-Tuning for Text Classification Prefix-tuning has drawed much attention as it is a parameter-efficient and modular alternative to adap

Zonghan Yang 12 Nov 30, 2022
Simple Dynamic Batching Inference

Simple Dynamic Batching Inference 解决了什么问题? 众所周知,Batch对于GPU上深度学习模型的运行效率影响很大。。。 是在Inference时。搜索、推荐等场景自带比较大的batch,问题不大。但更多场景面临的往往是稀碎的请求(比如图片服务里一次一张图)。 如果

116 Jan 01, 2023
A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want.

sne4onnx A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or

Katsuya Hyodo 10 Aug 30, 2022
An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics.

Sketch Simulator An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics. See

12 Dec 18, 2022