Official implementations of PSENet, PAN and PAN++.

Overview

News

  • (2021/11/03) Paddle implementation of PAN, see Paddle-PANet. Thanks @simplify23.
  • (2021/04/08) PSENet and PAN are included in MMOCR.

Introduction

This repository contains the official implementations of PSENet, PAN, PAN++, and FAST [coming soon].

Text Detection
Text Spotting

Installation

First, clone the repository locally:

git clone https://github.com/whai362/pan_pp.pytorch.git

Then, install PyTorch 1.1.0+, torchvision 0.3.0+, and other requirements:

conda install pytorch torchvision -c pytorch
pip install -r requirement.txt

Finally, compile codes of post-processing:

# build pse and pa algorithms
sh ./compile.sh

Dataset

Please refer to dataset/README.md for dataset preparation.

Training

CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py ${CONFIG_FILE}

For example:

CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py config/pan/pan_r18_ic15.py

Testing

Evaluate the performance

python test.py ${CONFIG_FILE} ${CHECKPOINT_FILE}
cd eval/
./eval_{DATASET}.sh

For example:

python test.py config/pan/pan_r18_ic15.py checkpoints/pan_r18_ic15/checkpoint.pth.tar
cd eval/
./eval_ic15.sh

Evaluate the speed

python test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --report_speed

For example:

python test.py config/pan/pan_r18_ic15.py checkpoints/pan_r18_ic15/checkpoint.pth.tar --report_speed

Citation

Please cite the related works in your publications if it helps your research:

PSENet

@inproceedings{wang2019shape,
  title={Shape Robust Text Detection with Progressive Scale Expansion Network},
  author={Wang, Wenhai and Xie, Enze and Li, Xiang and Hou, Wenbo and Lu, Tong and Yu, Gang and Shao, Shuai},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={9336--9345},
  year={2019}
}

PAN

@inproceedings{wang2019efficient,
  title={Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network},
  author={Wang, Wenhai and Xie, Enze and Song, Xiaoge and Zang, Yuhang and Wang, Wenjia and Lu, Tong and Yu, Gang and Shen, Chunhua},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={8440--8449},
  year={2019}
}

PAN++

@article{wang2021pan++,
  title={PAN++: Towards Efficient and Accurate End-to-End Spotting of Arbitrarily-Shaped Text},
  author={Wang, Wenhai and Xie, Enze and Li, Xiang and Liu, Xuebo and Liang, Ding and Zhibo, Yang and Lu, Tong and Shen, Chunhua},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2021},
  publisher={IEEE}
}

FAST

@misc{chen2021fast,
  title={FAST: Searching for a Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation}, 
  author={Zhe Chen and Wenhai Wang and Enze Xie and ZhiBo Yang and Tong Lu and Ping Luo},
  year={2021},
  eprint={2111.02394},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

License

This project is developed and maintained by IMAGINE [email protected] Key Laboratory for Novel Software Technology, Nanjing University.

IMAGINE Lab

This project is released under the Apache 2.0 license.

Comments
  • Evaluation of the performance result

    Evaluation of the performance result

    Hello Author, First of all, I would like to appreciate your work and effort. I have tried your repo. The evaluation code gives me an error of the "The sample 199 not present in GT," but the label text is there. When I tried to see the result via visualizing it on the images, it seems good. Let me know if there is any solution from your side.

    opened by dikubab 9
  • _pickle.PicklingError: Can't pickle <class 'cPolygon.Error'>: import of module 'cPolygon' failed

    _pickle.PicklingError: Can't pickle : import of module 'cPolygon' failed

    more complete log as belows: Epoch: [1 | 600] /data/tools/anaconda3/envs/zyl_torch16/lib/python3.7/site-packages/torch/nn/functional.py:2941: UserWarning: nn.functional.upsample is deprecated. Use nn.functional.interpolate instead. warnings.warn("nn.functional.upsample is deprecated. Use nn.functional.interpolate instead.") /data/tools/anaconda3/envs/zyl_torch16/lib/python3.7/site-packages/torch/nn/functional.py:3121: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details. "See the documentation of nn.Upsample for details.".format(mode)) (1/374) LR: 0.001000 | Batch: 2.668s | Total: 0min | ETA: 17min | Loss: 1.619 | Loss(text/kernel/emb/rec): 0.680/0.193/0.746/0.000 | IoU(text/kernel): 0.324/0.335 | Acc rec: 0.000 Traceback (most recent call last): File "/data/tools/anaconda3/envs/zyl_torch16/lib/python3.7/multiprocessing/queues.py", line 236, in _feed obj = _ForkingPickler.dumps(obj) File "/data/tools/anaconda3/envs/zyl_torch16/lib/python3.7/multiprocessing/reduction.py", line 51, in dumps cls(buf, protocol).dump(obj) _pickle.PicklingError: Can't pickle <class 'cPolygon.Error'>: import of module 'cPolygon' failed

    the code runs normally when using the CTW1500 datasets. but encounter errors when using my own datasets.

    it seems fine in the first run (1/374), what is wrong ? I have no idea.

    opened by Zhang-O 5
  • 关于训练的问题

    关于训练的问题

    您好!我现在在自己的数据上进行训练,训练过程是这样的 image Epoch: [212 | 600] (1/198) LR: 0.000677 | Batch: 3.934s | Total: 0min | ETA: 13min | Loss: 0.752 | Loss(text/kernel/emb/rec): 0.493/0.199/0.059/0.000 | IoU(text/kernel): 0.055/0.553 | Acc rec: 0.000 (21/198) LR: 0.000677 | Batch: 1.089s | Total: 0min | ETA: 3min | Loss: 0.731 | Loss(text/kernel/emb/rec): 0.478/0.199/0.054/0.000 | IoU(text/kernel): 0.048/0.482 | Acc rec: 0.000 (41/198) LR: 0.000677 | Batch: 1.022s | Total: 1min | ETA: 3min | Loss: 0.732 | Loss(text/kernel/emb/rec): 0.478/0.198/0.056/0.000 | IoU(text/kernel): 0.049/0.476 | Acc rec: 0.000 这个Acc rec一直是0,我终止训练后,在测试数据上进行测试时,output输出的是空的,请问是怎么回事呢,感谢啦!

    opened by mayidu 3
  • 关于后处理的疑问

    关于后处理的疑问

    1. 后处理的代码中当kernel中两个连通域的面积比大于max_rate时,将这两个连通域的flag赋值为1,在扩充时,必须同时满足当前扩充的点所属的连通域的flag值为1且与kernal的similar vector距离大于3时才不扩充该点。请问设flag这步操作的作用是什么,直接判断与Kernel的similar vector的距离可以吗?
    2. 论文中扩充的点与kernel相似向量的欧式距离thresh值为6,代码中为3,请问实际应用中这个值跟什么有关系,是数据集的某些特点吗?
    opened by jewelc92 3
  • Regarding pa.pyx

    Regarding pa.pyx

    Hi,

    I try to run your code and figure out that in your last line in pa.pyx

    return _pa(kernels[:-1], emb, label, cc, kernel_num, label_num, min_area)

    Looks like this should be

    return _pa(kernels, emb, label, cc, kernel_num, label_num, min_area)

    So that we can scan over all kernels (you skip the last kernel) and there is no crash in this function. Am I correct?

    Thanks.

    opened by liuch37 3
  • AttributeError: 'Namespace' object has no attribute 'resume'

    AttributeError: 'Namespace' object has no attribute 'resume'

    PAN++ic15,An error appears when trying to test the model:

    reading type: pil. Traceback (most recent call last): File "test.py", line 155, in main(args) File "test.py", line 138, in main print("No checkpoint found at '{}'".format(args.resume)) AttributeError: 'Namespace' object has no attribute 'resume'

    opened by lrjj 2
  • 训练Total Text时遇到的问题

    训练Total Text时遇到的问题

    运行 python train.py config/pan/pan_r18_tt.py 后,出现如下情况: p1 Traceback (most recent call last): File "/home/dell2/anaconda3/envs/pannet/lib/python3.6/multiprocessing/queues.py", line 234, in _feed obj = _ForkingPickler.dumps(obj) File "/home/dell2/anaconda3/envs/pannet/lib/python3.6/multiprocessing/reduction.py", line 51, in dumps cls(buf, protocol).dump(obj) _pickle.PicklingError: Can't pickle <class 'cPolygon.Error'>: import of module 'cPolygon' failed 似乎是迭代过程中出现的问题且只出现在训练TT数据集的时候 请问出现这种情况该怎样解决呢?谢谢您

    opened by mashumli 2
  • 执行test.py提示TypeError: 'module' object is not callable

    执行test.py提示TypeError: 'module' object is not callable

    将模型路径和config文件路径配置好了之后,执行python test.py,提示如下: Traceback (most recent call last): File "test.py", line 117, in main(args) File "test.py", line 107, in main test(test_loader, model, cfg) File "test.py", line 56, in test outputs = model(**data) File "/home/ethony/anaconda3/envs/ocr/lib/python3.6/site-packages/torch/nn/modules/module.py", line 547, in call result = self.forward(*input, **kwargs) File "/media/ethony/C14D581BDA18EBFA/lyg_datas_and_code/OCR_work/pan_pp.pytorch-master/models/pan.py", line 104, in forward det_res = self.det_head.get_results(det_out, img_metas, cfg) File "/media/ethony/C14D581BDA18EBFA/lyg_datas_and_code/OCR_work/pan_pp.pytorch-master/models/head/pa_head.py", line 65, in get_results label = pa(kernels, emb) TypeError: 'module' object is not callable 看提示应该是model/post_processing下的pa没有正确导入,导入为模块了,这应该怎么解决呢

    opened by ethanlighter 2
  • problems in train.py

    problems in train.py

    Hi. When I run 'python train.py config/pan/pan_r18_ic15.py' , the errors are as followings: Do you know how to solve the problem? Thank you very much. Traceback (most recent call last): File "train.py", line 234, in main(args) File "train.py", line 216, in main train(train_loader, model, optimizer, epoch, start_iter, cfg) File "train.py", line 41, in train for iter, data in enumerate(train_loader): File "D:\Anaconda3\lib\site-packages\torch\utils\data\dataloader.py", line 435, in next data = self._next_data() File "D:\Anaconda3\lib\site-packages\torch\utils\data\dataloader.py", line 1085, in _next_data return self._process_data(data) File "D:\Anaconda3\lib\site-packages\torch\utils\data\dataloader.py", line 1111, in _process_data data.reraise() File "D:\Anaconda3\lib\site-packages\torch_utils.py", line 428, in reraise raise self.exc_type(msg) TypeError: function takes exactly 5 arguments (1 given)

    opened by YUDASHUAI916 2
  • not sure about run compile.sh

    not sure about run compile.sh

    (zyl_torch16) [email protected]:/data/zhangyl/pan_pp.pytorch-master$ sh ./compile.sh Compiling pa.pyx because it depends on /data/tools/anaconda3/envs/zyl_torch16/lib/python3.7/site-packages/numpy/init.pxd. [1/1] Cythonizing pa.pyx /data/tools/anaconda3/envs/zyl_torch16/lib/python3.7/site-packages/Cython/Compiler/Main.py:369: FutureWarning: Cython directive 'language_level' not set, using 2 for now (Py2). This will change in a later release! File: /data/zhangyl/pan_pp.pytorch-master/models/post_processing/pa/pa.pyx tree = Parsing.p_module(s, pxd, full_module_name) running build_ext building 'pa' extension creating build creating build/temp.linux-x86_64-3.7 gcc -pthread -B /data/tools/anaconda3/envs/zyl_torch16/compiler_compat -Wl,--sysroot=/ -Wsign-compare -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -fPIC -I/data/tools/anaconda3/envs/zyl_torch16/lib/python3.7/site-packages/numpy/core/include -I/data/tools/anaconda3/envs/zyl_torch16/include/python3.7m -c pa.cpp -o build/temp.linux-x86_64-3.7/pa.o -O3 cc1plus: warning: command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C++ In file included from /data/tools/anaconda3/envs/zyl_torch16/lib/python3.7/site-packages/numpy/core/include/numpy/ndarraytypes.h:1822:0, from /data/tools/anaconda3/envs/zyl_torch16/lib/python3.7/site-packages/numpy/core/include/numpy/ndarrayobject.h:12, from /data/tools/anaconda3/envs/zyl_torch16/lib/python3.7/site-packages/numpy/core/include/numpy/arrayobject.h:4, from pa.cpp:647: /data/tools/anaconda3/envs/zyl_torch16/lib/python3.7/site-packages/numpy/core/include/numpy/npy_1_7_deprecated_api.h:17:2: warning: #warning "Using deprecated NumPy API, disable it with " "#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION" [-Wcpp] #warning "Using deprecated NumPy API, disable it with "
    ^~~~~~~ g++ -pthread -shared -B /data/tools/anaconda3/envs/zyl_torch16/compiler_compat -L/data/tools/anaconda3/envs/zyl_torch16/lib -Wl,-rpath=/data/tools/anaconda3/envs/zyl_torch16/lib -Wl,--no-as-needed -Wl,--sysroot=/ build/temp.linux-x86_64-3.7/pa.o -o /data/zhangyl/pan_pp.pytorch-master/models/post_processing/pa/pa.cpython-37m-x86_64-linux-gnu.so (zyl_torch16) [email protected]:/data/zhangyl/pan_pp.pytorch-master$

    this is the compile history, I am not sure whether is successully build or not.

    opened by Zhang-O 2
  • morphology operations from kornia

    morphology operations from kornia

    Hi,

    Your FAST paper is really amazing! While you already have an implementation of erosion/dilation, let me offer using our set of morphology, implemented in pyre pytorch: https://kornia.readthedocs.io/en/latest/morphology.html

    https://kornia-tutorials.readthedocs.io/en/master/morphology_101.html

    Best, Dmytro.

    opened by ducha-aiki 1
  • The sample 199 not present in GT

    The sample 199 not present in GT

    Hello Author, First of all, I would like to appreciate your work and effort. I have tried your repo. The evaluation code gives me an error of the "The sample 199 not present in GT," but the label text is there. When I tried to see the result via visualizing it on the images, it seems good. Let me know if there is any solution from your side.

    opened by zeng-cy 1
  • How  to predict a new image using the training weight?it doesn't work below.

    How to predict a new image using the training weight?it doesn't work below.

    How to predict a new image using the training weight?it doesn't work below.

    python test.py config/pan/pan_r18_ic15.py checkpoints/pan_r18_ic15/checkpoint.pth.tar cd eval/ ./eval_ic15.sh

    please inform me with [email protected] or wechat SanQian-2012,thanks you so much.

    Originally posted by @Devin521314 in https://github.com/whai362/pan_pp.pytorch/issues/91#issuecomment-1233810612

    opened by Devin521314 0
  • Why rec encoder use EOS? not SOS

    Why rec encoder use EOS? not SOS

    hi: I find there is no 'SOS' in code, I understand SOS should be embedding at the beginning. Please tell me ,thanks! ---------------code----------------------------------------------- class Encoder(nn.Module): def init(self, hidden_dim, voc, char2id, id2char): super(Encoder, self).init() self.hidden_dim = hidden_dim self.vocab_size = len(voc) self.START_TOKEN = char2id['EOS'] self.emb = nn.Embedding(self.vocab_size, self.hidden_dim) self.att = MultiHeadAttentionLayer(self.hidden_dim, 8)

    def forward(self, x):
        batch_size, feature_dim, H, W = x.size()
        x_flatten = x.view(batch_size, feature_dim, H * W).permute(0, 2, 1)
        st = x.new_full((batch_size,), self.START_TOKEN, dtype=torch.long)
        emb_st = self.emb(st)
        holistic_feature, _ = self.att(emb_st, x_flatten, x_flatten)
        return 
    
    opened by Patickk 0
Releases(v1)
Torch-ngp - A pytorch implementation of the hash encoder proposed in instant-ngp

HashGrid Encoder (WIP) A pytorch implementation of the HashGrid Encoder from ins

hawkey 1k Jan 01, 2023
Code for the ICASSP-2021 paper: Continuous Speech Separation with Conformer.

Continuous Speech Separation with Conformer Introduction We examine the use of the Conformer architecture for continuous speech separation. Conformer

Sanyuan Chen (陈三元) 81 Nov 28, 2022
Annotate datasets with a semi-trained or fully trained YOLOv5 model

YOLOv5 Auto Annotator Annotate datasets with a semi-trained or fully trained YOLOv5 model Prerequisites Ubuntu =20.04 Python =3.7 System dependencie

Akash James 3 May 14, 2022
Official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Imbalance Classification"

DPGNN This repository is an official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Im

Yu Wang (Jack) 18 Oct 12, 2022
Code and data for the paper "Hearing What You Cannot See"

Hearing What You Cannot See: Acoustic Vehicle Detection Around Corners Public repository of the paper "Hearing What You Cannot See: Acoustic Vehicle D

TU Delft Intelligent Vehicles 26 Jul 13, 2022
PyTorch code for the paper "FIERY: Future Instance Segmentation in Bird's-Eye view from Surround Monocular Cameras"

FIERY This is the PyTorch implementation for inference and training of the future prediction bird's-eye view network as described in: FIERY: Future In

Wayve 406 Dec 24, 2022
PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

Zechen Bai 12 Jul 08, 2022
DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021)

DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021) This repo is the implementation of DPC. Tested environment Pyth

Dvir Ginzburg 30 Nov 30, 2022
Official code for Score-Based Generative Modeling through Stochastic Differential Equations

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains the official implementation for the paper Score-Based Gen

Yang Song 818 Jan 06, 2023
Code for paper Adaptively Aligned Image Captioning via Adaptive Attention Time

Adaptively Aligned Image Captioning via Adaptive Attention Time This repository includes the implementation for Adaptively Aligned Image Captioning vi

Lun Huang 45 Aug 27, 2022
Sample and Computation Redistribution for Efficient Face Detection

Introduction SCRFD is an efficient high accuracy face detection approach which initially described in Arxiv. Performance Precision, flops and infer ti

Sajjad Aemmi 13 Mar 05, 2022
List of content farm sites like g.penzai.com.

内容农场网站清单 Google 中文搜索结果包含了相当一部分的内容农场式条目,比如「小 X 知识网」「小 X 百科网」。此种链接常会 302 重定向其主站,页面内容为自动生成,大量堆叠关键字,揉杂一些爬取到的内容,完全不具可读性和参考价值。 尤为过分的是,该类网站可能有成千上万个分身域名被 Goog

WDMPA 541 Jan 03, 2023
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

    VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
FAMIE is a comprehensive and efficient active learning (AL) toolkit for multilingual information extraction (IE)

FAMIE: A Fast Active Learning Framework for Multilingual Information Extraction

18 Sep 01, 2022
Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning

Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning Code for the paper Harmonious Textual Layout Generation over Nat

7 Aug 09, 2022
Official code of the paper "Expanding Low-Density Latent Regions for Open-Set Object Detection" (CVPR 2022)

OpenDet Expanding Low-Density Latent Regions for Open-Set Object Detection (CVPR2022) Jiaming Han, Yuqiang Ren, Jian Ding, Xingjia Pan, Ke Yan, Gui-So

csuhan 64 Jan 07, 2023
A Python library for differentiable optimal control on accelerators.

A Python library for differentiable optimal control on accelerators.

Google 80 Dec 21, 2022
Code and hyperparameters for the paper "Generative Adversarial Networks"

Generative Adversarial Networks This repository contains the code and hyperparameters for the paper: "Generative Adversarial Networks." Ian J. Goodfel

Ian Goodfellow 3.5k Jan 08, 2023
NEO: Non Equilibrium Sampling on the orbit of a deterministic transform

NEO: Non Equilibrium Sampling on the orbit of a deterministic transform Description of the code This repo describes the NEO estimator described in the

0 Dec 01, 2021
Turning pixels into virtual points for multimodal 3D object detection.

Multimodal Virtual Point 3D Detection Turning pixels into virtual points for multimodal 3D object detection. Multimodal Virtual Point 3D Detection, Ti

Tianwei Yin 204 Jan 08, 2023