This code extends the neural style transfer image processing technique to video by generating smooth transitions between several reference style images

Overview

Neural Style Transfer Transition Video Processing

By Brycen Westgarth and Tristan Jogminas

Description

This code extends the neural style transfer image processing technique to video by generating smooth transitions between a sequence of reference style images across video frames. The generated output video is a highly altered, artistic representation of the input video consisting of constantly changing abstract patterns and colors that emulate the original content of the video. The user's choice of style reference images, style sequence order, and style sequence length allow for infinite user experimentation and the creation of an endless range of artistically interesting videos.

System Requirements

This algorithm is computationally intensive so I highly recommend optimizing its performance by installing drivers for Tensorflow GPU support if you have access to a CUDA compatible GPU. Alternatively, you can take advantage of the free GPU resources available through Google Colab Notebooks. Even with GPU acceleration, the program may take several minutes to render a video.

Colab Notebook Version

Configuration

All configuration of the video properties and input/output file locations can be set by the user in config.py

Configurable Variable in config.py Description
ROOT_PATH Path to input/output directory
FRAME_HEIGHT Sets height dimension in pixels to resize the output video to. Video width will be calculated automatically to preserve aspect ratio. Low values will speed up processing time but reduce output video quality
INPUT_FPS Defines the rate at which frames are captured from the input video
INPUT_VIDEO_NAME Filename of input video
STYLE_SEQUENCE List that contains the indices corresponding to the image files in the 'style_ref' folder. Defines the reference style image transition sequence. Can be arbitrary length, the rate at which the video transitions between styles will be adjusted to fit the video
OUTPUT_FPS Defines the frame rate of the output video
OUTPUT_VIDEO_NAME Filename of output video to be created
GHOST_FRAME_TRANSPARENCY Proportional feedback constant for frame generation. Should be a value between 0 and 1. Affects the amount change that can occur between frames and the smoothness of the transitions.

The user must find and place their own style reference images in the style_ref directory. Style reference images can be arbitrary size. Three example style reference images are given.

Minor video time effects can be created by setting INPUT_FPS and OUTPUT_FPS to different relative values

  • INPUT_FPS > OUTPUT_FPS creates a slowed time effect
  • INPUT_FPS = OUTPUT_FPS creates no time effect
  • INPUT_FPS < OUTPUT_FPS creates a timelapse effect

Usage

$ python3 -m venv env
$ source env/bin/activate
$ pip3 install -r requirements.txt
$ python3 style_frames.py

Examples

Input Video

file

Example 1

Reference Style Image Transition Sequence

file

Output Video

file

Example 2

Reference Style Image Transition Sequence

file

Output Video

file

Example Video made using this program
Owner
Brycen Westgarth
Computer Engineering Student at UC Santa Barbara
Brycen Westgarth
Module for automatic summarization of text documents and HTML pages.

Automatic text summarizer Simple library and command line utility for extracting summary from HTML pages or plain texts. The package also contains sim

Mišo Belica 3k Jan 08, 2023
LSTM based Sentiment Classification using Tensorflow - Amazon Reviews Rating

LSTM based Sentiment Classification using Tensorflow - Amazon Reviews Rating (Dataset) The dataset is from Amazon Review Data (2018)

Immanuvel Prathap S 1 Jan 16, 2022
Simple Speech to Text, Text to Speech

Simple Speech to Text, Text to Speech 1. Download Repository Opsi 1 Download repository ini, extract di lokasi yang diinginkan Opsi 2 Jika sudah famil

Habib Abdurrasyid 5 Dec 28, 2021
Auto_code_complete is a auto word-completetion program which allows you to customize it on your needs

auto_code_complete is a auto word-completetion program which allows you to customize it on your needs. the model for this program is one of the deep-learning NLP(Natural Language Process) model struc

RUO 2 Feb 22, 2022
Natural Language Processing at EDHEC, 2022

Natural Language Processing Here you will find the teaching materials for the "Natural Language Processing" course at EDHEC Business School, 2022 What

1 Feb 04, 2022
This project converts your human voice input to its text transcript and to an automated voice too.

Human Voice to Automated Voice & Text Introduction: In this project, whenever you'll speak, it will turn your voice into a robot voice and furthermore

Hassan Shahzad 3 Oct 15, 2021
ChainKnowledgeGraph, 产业链知识图谱包括A股上市公司、行业和产品共3类实体

ChainKnowledgeGraph, 产业链知识图谱包括A股上市公司、行业和产品共3类实体,包括上市公司所属行业关系、行业上级关系、产品上游原材料关系、产品下游产品关系、公司主营产品、产品小类共6大类。 上市公司4,654家,行业511个,产品95,559条、上游材料56,824条,上级行业480条,下游产品390条,产品小类52,937条,所属行业3,946条。

liuhuanyong 415 Jan 06, 2023
A method to generate speech across multiple speakers

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

Facebook Archive 873 Dec 15, 2022
CATs: Semantic Correspondence with Transformers

CATs: Semantic Correspondence with Transformers For more information, check out the paper on [arXiv]. Training with different backbones and evaluation

74 Dec 10, 2021
Code for paper: An Effective, Robust and Fairness-awareHate Speech Detection Framework

BiQQLSTM_HS Code and data for paper: Title: An Effective, Robust and Fairness-awareHate Speech Detection Framework. Authors: Guanyi Mou and Kyumin Lee

Guanyi Mou 2 Dec 27, 2022
基于“Seq2Seq+前缀树”的知识图谱问答

KgCLUE-bert4keras 基于“Seq2Seq+前缀树”的知识图谱问答 简介 博客:https://kexue.fm/archives/8802 环境 软件:bert4keras=0.10.8 硬件:目前的结果是用一张Titan RTX(24G)跑出来的。 运行 第一次运行的时候,会给知

苏剑林(Jianlin Su) 65 Dec 12, 2022
SimCTG - A Contrastive Framework for Neural Text Generation

A Contrastive Framework for Neural Text Generation Authors: Yixuan Su, Tian Lan,

Yixuan Su 345 Jan 03, 2023
Natural Language Processing with transformers

we want to create a repo to illustrate usage of transformers in chinese

Datawhale 763 Dec 27, 2022
Nystromformer: A Nystrom-based Algorithm for Approximating Self-Attention

Nystromformer: A Nystrom-based Algorithm for Approximating Self-Attention April 6, 2021 We extended segment-means to compute landmarks without requiri

Zhanpeng Zeng 322 Jan 01, 2023
This repo is to provide a list of literature regarding Deep Learning on Graphs for NLP

This repo is to provide a list of literature regarding Deep Learning on Graphs for NLP

Graph4AI 230 Nov 22, 2022
华为商城抢购手机的Python脚本 Python script of Huawei Store snapping up mobile phones

HUAWEI STORE GO 2021 说明 基于Python3+Selenium的华为商城抢购爬虫脚本,修改自近两年没更新的项目BUY-HW,为女神抢Nova 8(什么时候华为开始学小米玩饥饿营销了?) 原项目的登陆以及抢购部分已经不可用,本项目对原项目进行了改正以适应新华为商城,并增加一些功能

ZhangLiang 111 Dec 22, 2022
Application to help find best train itinerary, uses speech to text, has a spam filter to segregate invalid inputs, NLP and Pathfinding algos.

T-IAI-901-MSC2022 - GROUP 18 Gestion de projet Notre travail a été organisé et réparti dans un Trello. https://trello.com/b/X3s2fpPJ/ia-projet Install

1 Feb 05, 2022
Bidirectional Variational Inference for Non-Autoregressive Text-to-Speech (BVAE-TTS)

Bidirectional Variational Inference for Non-Autoregressive Text-to-Speech (BVAE-TTS) Yoonhyung Lee, Joongbo Shin, Kyomin Jung Abstract: Although early

LEE YOON HYUNG 147 Dec 05, 2022
NLP and Text Generation Experiments in TensorFlow 2.x / 1.x

Code has been run on Google Colab, thanks Google for providing computational resources Contents Natural Language Processing(自然语言处理) Text Classificati

1.5k Nov 14, 2022