Implementation of "Bidirectional Projection Network for Cross Dimension Scene Understanding" CVPR 2021 (Oral)

Overview

Bidirectional Projection Network for Cross Dimension Scene Understanding

CVPR 2021 (Oral)

[ Project Webpage ] [ arXiv ] [ Video ]

Existing segmentation methods are mostly unidirectional, i.e. utilizing 3D for 2D segmentation or vice versa. Obviously 2D and 3D information can nicely complement each other in both directions, during the segmentation. This is the goal of bidirectional projection network.

bpnet

Environment

  • Main
# Torch
$ pip install torch==1.4.0+cu100 torchvision==0.5.0+cu100 -f https://download.pytorch.org/whl/torch_stable.html
# MinkowskiEngine 0.4.1
$ conda install numpy openblas
$ git clone https://github.com/StanfordVL/MinkowskiEngine.git
$ cd MinkowskiEngine
$ git checkout f1a419cc5792562a06df9e1da686b7ce8f3bb5ad
$ python setup.py install
# Others
$ pip install imageio==2.8.0 opencv-python==4.2.0.32 pillow==7.0.0 pyyaml==5.3 scipy==1.4.1 sharedarray==3.2.0 tensorboardx==2.0 tqdm==4.42.1
  • Others

    Please refer to env.yml for details.

Prepare data

  • Download the dataset from official website.

  • 2D: The scripts is from 3DMV repo, it is based on python2, other code in this repo is based on python3 python prepare_2d_data.py --scannet_path data/scannetv2 --output_path data/scannetv2_images --export_label_images

  • 3D: dataset/preprocess_3d_scannet.py

Config

  • BPNet_5cm: config/scannet/bpnet_5cm.yaml

Training

  • Download pretrained 2D ResNets on ImageNet from PyTorch website, and put them into the initmodel folder.
model_urls = {
    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}
  • Start training: sh tool/train.sh EXP_NAME /PATH/TO/CONFIG NUMBER_OF_THREADS

  • Resume: sh tool/resume.sh EXP_NAME /PATH/TO/CONFIG(copied one) NUMBER_OF_THREADS

NUMBER_OF_THREADS is the threads to use per process (gpu), so optimally, it should be Total_threads / gpu_number_used

Testing

  • Testing using your trained model or our pre-trained model (voxel_size: 5cm): sh tool/test.sh EXP_NAME /PATH/TO/CONFIG(copied one) NUMBER_OF_THREADS)

Copyright and License

You are granted with the LICENSE for both academic and commercial usages.

Acknowledgment

Our code is based on MinkowskiEngine. We also referred to SparseConvNet and semseg.

Citation

@inproceedings{hu-2021-bidirectional,
        author      = {Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia and Tien-Tsin Wong},
        title       = {Bidirectional Projection Network for Cross Dimensional Scene Understanding},
        booktitle   = {CVPR},
        year        = {2021}
    }
Owner
Hu Wenbo
Think twice, code once.
Hu Wenbo
The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

John Salib 2 Jan 30, 2022
Official code of paper: MovingFashion: a Benchmark for the Video-to-Shop Challenge

SEAM Match-RCNN Official code of MovingFashion: a Benchmark for the Video-to-Shop Challenge paper Installation Requirements: Pytorch 1.5.1 or more rec

HumaticsLAB 31 Oct 10, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
Official implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN Official PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. Prerequisites Python 2.7

SK T-Brain 754 Dec 29, 2022
Deploy a ML inference service on a budget in less than 10 lines of code.

BudgetML is perfect for practitioners who would like to quickly deploy their models to an endpoint, but not waste a lot of time, money, and effort trying to figure out how to do this end-to-end.

1.3k Dec 25, 2022
Explaining in Style: Training a GAN to explain a classifier in StyleSpace

Explaining in Style: Official TensorFlow Colab Explaining in Style: Training a GAN to explain a classifier in StyleSpace Oran Lang, Yossi Gandelsman,

Google 197 Nov 08, 2022
Multi-agent reinforcement learning algorithm and environment

Multi-agent reinforcement learning algorithm and environment [en/cn] Pytorch implements multi-agent reinforcement learning algorithms including IQL, Q

万鲲鹏 7 Sep 20, 2022
Yolo object detection - Yolo object detection with python

How to run download required files make build_image make download Docker versio

3 Jan 26, 2022
Categorizing comments on YouTube into different categories.

Youtube Comments Categorization This repo is for categorizing comments on a youtube video into different categories. negative (grievances, complaints,

Rhitik 5 Nov 26, 2022
A lightweight python AUTOmatic-arRAY library.

A lightweight python AUTOmatic-arRAY library. Write numeric code that works for: numpy cupy dask autograd jax mars tensorflow pytorch ... and indeed a

Johnnie Gray 62 Dec 27, 2022
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
An OpenAI Gym environment for Super Mario Bros

gym-super-mario-bros An OpenAI Gym environment for Super Mario Bros. & Super Mario Bros. 2 (Lost Levels) on The Nintendo Entertainment System (NES) us

Andrew Stelmach 1 Jan 05, 2022
Official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".

Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics This repository is the official PyTorch implementation of "Physics-aware Differ

USC-Melady 46 Nov 20, 2022
Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees"

Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees" Installa

0 Oct 13, 2021
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023
A Lightweight Experiment & Resource Monitoring Tool 📺

Lightweight Experiment & Resource Monitoring 📺 "Did I already run this experiment before? How many resources are currently available on my cluster?"

170 Dec 28, 2022
HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep Features in Adversarial Networks

HiFiGAN Denoiser This is a Unofficial Pytorch implementation of the paper HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep F

Rishikesh (ऋषिकेश) 134 Dec 27, 2022
Official repository for the CVPR 2021 paper "Learning Feature Aggregation for Deep 3D Morphable Models"

Deep3DMM Official repository for the CVPR 2021 paper Learning Feature Aggregation for Deep 3D Morphable Models. Requirements This code is tested on Py

38 Dec 27, 2022
Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are implemented and can be seen in tensorboard.

Sarus published models Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are

Sarus Technologies 39 Aug 19, 2022