Visual Memorability for Robotic Interestingness via Unsupervised Online Learning (ECCV 2020 Oral and TRO)

Overview

Visual Interestingness


Install Dependencies

This version is tested in PyTorch 1.7

  pip3 install -r requirements.txt

Long-term Learning

  • You may skip this step, if you download the pre-trained vgg16.pt into folder "saves".

  • Download coco dataset into folder [data-root]:

    bash download_coco.sh [data-root] # replace [data-root] by your desired location
    

    The dataset will be look like:

    data-root
    ├──coco
       ├── annotations
       │   ├── annotations_trainval2017
       │   └── image_info_test2017
       └── images
           ├── test2017
           ├── train2017
           └── val2017
    
  • Run

    python3 longterm.py --data-root [data-root] --model-save saves/vgg16.pt
    
    # This requires a long time for training on single GPU.
    # Create a folder "saves" manually and a model named "ae.pt" will be saved.
    

Short-term Learning

  • Dowload the SubT front camera data (SubTF) and put into folder "data-root", so that it looks like:

    data-root
    ├──SubTF
       ├── 0817-ugv0-tunnel0
       ├── 0817-ugv1-tunnel0
       ├── 0818-ugv0-tunnel1
       ├── 0818-ugv1-tunnel1
       ├── 0820-ugv0-tunnel1
       ├── 0821-ugv0-tunnel0
       ├── 0821-ugv1-tunnel0
       ├── ground-truth
       └── train
    
  • Run

    python3 shortterm.py --data-root [data-root] --model-save saves/vgg16.pt --dataset SubTF --memory-size 100 --save-flag n100usage
    
    # This will read the previous model "ae.pt".
    # A new model "ae.pt.SubTF.n1000.mse" will be generated.
    
  • You may skip this step, if you download the pre-trained vgg16.pt.SubTF.n100usage.mse into folder "saves".

On-line Learning

  • Run

      python3 online.py --data-root [data-root] --model-save saves/vgg16.pt.SubTF.n100usage.mse --dataset SubTF --test-data 0 --save-flag n100usage
    
      # --test-data The sequence ID in the dataset SubTF, [0-6] is avaiable
      # This will read the trained model "vgg16.pt.SubTF.n100usage.mse" from short-term learning.
    
  • Alternatively, you may test all sequences by running

      bash test.sh
    
  • This will generate results files in folder "results".

  • You may skip this step, if you download our generated results.


Evaluation

  • We follow the SubT tutorial for evaluation, simply run

    python performance.py --data-root [data-root] --save-flag n100usage --category normal --delta 1 2 3
    # mean accuracy: [0.64455275 0.8368784  0.92165116 0.95906876]
    
    python performance.py --data-root [data-root] --save-flag n100usage --category difficult --delta 1 2 4
    # mean accuracy: [0.42088688 0.57836163 0.67878168 0.75491805]
    
  • This will generate performance figures and create data curves for two categories in folder "performance".


Citation

      @inproceedings{wang2020visual,
        title={Visual memorability for robotic interestingness via unsupervised online learning},
        author={Wang, Chen and Wang, Wenshan and Qiu, Yuheng and Hu, Yafei and Scherer, Sebastian},
        booktitle={European Conference on Computer Vision (ECCV)},
        year={2020},
        organization={Springer}
      }
      
      @article{wang2021unsupervised,
        title={Unsupervised Online Learning for Robotic Interestingness with Visual Memory},
        author={Wang, Chen and  Qiu, Yuheng and Wang, Wenshan and Hu, Yafei anad Kim, Seungchan and Scherer, Sebastian},
        journal={IEEE Transactions on Robotics (T-RO)},
        year={2021},
        publisher={IEEE}
      }

You may watch the following video to catch the idea of this work.

You might also like...
Code for the paper "Improving Vision-and-Language Navigation with Image-Text Pairs from the Web" (ECCV 2020)

Improving Vision-and-Language Navigation with Image-Text Pairs from the Web Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh

Code for ECCV 2020 paper
Code for ECCV 2020 paper "Contacts and Human Dynamics from Monocular Video".

Contact and Human Dynamics from Monocular Video This is the official implementation for the ECCV 2020 spotlight paper by Davis Rempe, Leonidas J. Guib

Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020)
Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020)

Causality In Traffic Accident (Under Construction) Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020) Overview Data Prepa

Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks

PWLQ Updates 2020/07/16 - We are working on getting permission from our institution to release our source code. We will release it once we are granted

dataset for ECCV 2020 "Motion Capture from Internet Videos"

Motion Capture from Internet Videos Motion Capture from Internet Videos Junting Dong*, Qing Shuai*, Yuanqing Zhang, Xian Liu, Xiaowei Zhou, Hujun Bao

Code for the paper: Adversarial Training Against Location-Optimized Adversarial Patches. ECCV-W 2020.

Adversarial Training Against Location-Optimized Adversarial Patches arXiv | Paper | Code | Video | Slides Code for the paper: Sukrut Rao, David Stutz,

SNE-RoadSeg in PyTorch, ECCV 2020
SNE-RoadSeg in PyTorch, ECCV 2020

SNE-RoadSeg Introduction This is the official PyTorch implementation of SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentati

[ECCV 2020] Gradient-Induced Co-Saliency Detection
[ECCV 2020] Gradient-Induced Co-Saliency Detection

Gradient-Induced Co-Saliency Detection Zhao Zhang*, Wenda Jin*, Jun Xu, Ming-Ming Cheng ⭐ Project Home » The official repo of the ECCV 2020 paper Grad

Code for Towards Streaming Perception (ECCV 2020) :car:
Code for Towards Streaming Perception (ECCV 2020) :car:

sAP — Code for Towards Streaming Perception ECCV Best Paper Honorable Mention Award Feb 2021: Announcing the Streaming Perception Challenge (CVPR 2021

Comments
  • Variable

    Variable

    https://github.com/wang-chen/interestingness/blob/6994d50bd47d14b617f34f5c36c1beaba03acfdc/test_interest.py#L94

    I think using Variable() will just return a tensor object in the new pytorch version.

    opened by haleqiu 2
Owner
Chen Wang
I am engaged in delivering simple and efficient source code.
Chen Wang
Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies

Deconfounding Temporal Autoencoder (DTA) This is a repository for the paper "Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Tim

Milan Kuzmanovic 3 Feb 04, 2022
TensorFlow implementation of Deep Reinforcement Learning papers

Deep Reinforcement Learning in TensorFlow TensorFlow implementation of Deep Reinforcement Learning papers. This implementation contains: [1] Playing A

Taehoon Kim 1.6k Jan 03, 2023
MlTr: Multi-label Classification with Transformer

MlTr: Multi-label Classification with Transformer This is official implement of "MlTr: Multi-label Classification with Transformer". Abstract The task

程星 38 Nov 08, 2022
Advantage Actor Critic (A2C): jax + flax implementation

Advantage Actor Critic (A2C): jax + flax implementation Current version supports only environments with continious action spaces and was tested on muj

Andrey 3 Jan 23, 2022
UPSNet: A Unified Panoptic Segmentation Network

UPSNet: A Unified Panoptic Segmentation Network Introduction UPSNet is initially described in a CVPR 2019 oral paper. Disclaimer This repository is te

Uber Research 622 Dec 26, 2022
Black box hyperparameter optimization made easy.

BBopt BBopt aims to provide the easiest hyperparameter optimization you'll ever do. Think of BBopt like Keras (back when Theano was still a thing) for

Evan Hubinger 70 Nov 03, 2022
A PyTorch implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Caiyong Wang 14 Sep 20, 2022
code and models for "Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation"

Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation This repository contains code and models for the method described in: Golnaz

55 Jun 18, 2022
codes for "Scheduled Sampling Based on Decoding Steps for Neural Machine Translation" (long paper of EMNLP-2022)

Scheduled Sampling Based on Decoding Steps for Neural Machine Translation (EMNLP-2021 main conference) Contents Overview Background Quick to Use Furth

Adaxry 13 Jul 25, 2022
MLP-Numpy - A simple modular implementation of Multi Layer Perceptron in pure Numpy.

MLP-Numpy A simple modular implementation of Multi Layer Perceptron in pure Numpy. I used the Iris dataset from scikit-learn library for the experimen

Soroush Omranpour 1 Jan 01, 2022
Point cloud processing tool library.

Point Cloud ToolBox This point cloud processing tool library can be used to process point clouds, 3d meshes, and voxels. Environment python 3.7.5 Dep

ZhangXinyun 40 Dec 09, 2022
A python comtrade load library accelerated by go

Comtrade-GRPC Code for python used is mainly from dparrini/python-comtrade. Just patch the code in BinaryDatReader.parse for parsing a little more eff

Bo 1 Dec 27, 2021
Safe Bayesian Optimization

SafeOpt - Safe Bayesian Optimization This code implements an adapted version of the safe, Bayesian optimization algorithm, SafeOpt [1], [2]. It also p

Felix Berkenkamp 111 Dec 11, 2022
LibMTL: A PyTorch Library for Multi-Task Learning

LibMTL LibMTL is an open-source library built on PyTorch for Multi-Task Learning (MTL). See the latest documentation for detailed introductions and AP

765 Jan 06, 2023
Code for CVPR2019 Towards Natural and Accurate Future Motion Prediction of Humans and Animals

Motion prediction with Hierarchical Motion Recurrent Network Introduction This work concerns motion prediction of articulate objects such as human, fi

Shuang Wu 85 Dec 11, 2022
Author's PyTorch implementation of TD3 for OpenAI gym tasks

Addressing Function Approximation Error in Actor-Critic Methods PyTorch implementation of Twin Delayed Deep Deterministic Policy Gradients (TD3). If y

Scott Fujimoto 1.3k Dec 25, 2022
Privacy-Preserving Portrait Matting [ACM MM-21]

Privacy-Preserving Portrait Matting [ACM MM-21] This is the official repository of the paper Privacy-Preserving Portrait Matting. Jizhizi Li∗, Sihan M

Jizhizi_Li 212 Dec 27, 2022
Character-Input - Create a program that asks the user to enter their name and their age

Character-Input Create a program that asks the user to enter their name and thei

PyLaboratory 0 Feb 06, 2022
PyTorch Personal Trainer: My framework for deep learning experiments

Alex's PyTorch Personal Trainer (ptpt) (name subject to change) This repository contains my personal lightweight framework for deep learning projects

Alex McKinney 8 Jul 14, 2022
This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?".

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?". Code ov

ICLR 2022 Author 934 Dec 30, 2022