Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".

Overview

Variational Gibbs inference (VGI)

This repository contains the research code for

Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs inference for statistical model estimation from incomplete data.

The code is shared for reproducibility purposes and is not intended for production use. It should also serve as a reference implementation for anyone wanting to use VGI for model estimation from incomplete data.

Abstract

Statistical models are central to machine learning with broad applicability across a range of downstream tasks. The models are typically controlled by free parameters that are estimated from data by maximum-likelihood estimation. However, when faced with real-world datasets many of the models run into a critical issue: they are formulated in terms of fully-observed data, whereas in practice the datasets are plagued with missing data. The theory of statistical model estimation from incomplete data is conceptually similar to the estimation of latent-variable models, where powerful tools such as variational inference (VI) exist. However, in contrast to standard latent-variable models, parameter estimation with incomplete data often requires estimating exponentially-many conditional distributions of the missing variables, hence making standard VI methods intractable. We address this gap by introducing variational Gibbs inference (VGI), a new general-purpose method to estimate the parameters of statistical models from incomplete data.

VGI demo

We invite the readers of the paper to also see the Jupyter notebook, where we demonstrate VGI on two statistical models and animate the learning process to help better understand the method.

Below is an animation from the notebook of a Gaussian Mixture Model fitted from incomplete data using the VGI algorithm (left), and the variational Gibbs conditional approximations (right) throughout iterations.

demo_vgi_mog_fit.mp4

Dependencies

Install python dependencies from conda and the cdi project package with

conda env create -f environment.yml
conda activate cdi
python setup.py develop

If the dependencies in environment.yml change, update dependencies with

conda env update --file environment.yml

Summary of the repository structure

Data

All data used in the paper are stored in data directory and the corresponding data loaders can be found in cdi/data directory.

Method code

The main code to the various methods used in the paper can be found in cdi/trainers directory.

  • trainer_base.py implements the main data loading and preprocessing code.
  • variational_cdi.py and cdi.py implement the key code for variational Gibbs inference (VGI).
  • mcimp.py implements the code for variational block-Gibbs inference (VBGI) used in the VAE experiments.
  • The other scripts in cdi/trainers implement the comparison methods and variational conditional pre-training.

Statistical models

The code for the statistical (factor analysis, VAEs, and flows) and the variational models are located in cdi/models.

Configuration files

The experiment_configs directory contains the configuration files for all experiments. The config files include all the hyperparameter settings necessary to reproduce our results. The config files are in a json format. They are passed to the main running script as a command-line argument and values in them can be overriden with additional command-line arguments.

Run scripts

train.py is the main code we use to run the experiments, and test.py is the main script to produce analysis results presented in the paper.

Analysis code

The Jupyter notebooks in notebooks directory contain the code which was used to analysis the method and produce figures in the paper. You should also be able to use these notebooks to find the corresponding names of the config files for the experiments in the paper.

Running the code

Before running any code you'll need to activate the cdi conda environment (and make sure you've installed the dependencies)

conda activate cdi

Model fitting

To train a model use the train.py script, for example, to fit a rational-quadratic spline flow on 50% missing MiniBooNE dataset

python train.py --config=experiment_configs/flows_uci/learning_experiments/3/rqcspline_miniboone_chrqsvar_cdi_uncondgauss.json

Any parameters set in the config file can be overriden by passing additionals command-line arguments, e.g.

python train.py --config=experiment_configs/flows_uci/learning_experiments/3/rqcspline_miniboone_chrqsvar_cdi_uncondgauss.json --data.total_miss=0.33

Optional variational model warm-up

Some VGI experiments use variational model "warm-up", which pre-trains the variational model on observed data as probabilistic regressors. The experiment configurations for these runs will have var_pretrained_model set to the name of the pre-trained model. To run the corresponding pre-training script run, e.g.

python train.py --config=experiment_configs/flows_uci/learning_experiments/3/miniboone_chrqsvar_pretraining_uncondgauss.json

Running model evaluation

For model evaluation use test.py with the corresponding test config, e.g.

python test.py --test_config=experiment_configs/flows_uci/eval_loglik/3/rqcspline_miniboone_chrqsvar_cdi_uncondgauss.json

This will store all results in a file that we then analyse in the provided notebook.

For the VAE evaluation, where variational distribution fine-tuning is required for test log-likelihood evaluation use retrain_all_ckpts_on_test_and_run_test.py.

Using this codebase on your own task

While the main purpose of this repository is reproducibility of the research paper and a demonstration of the method, you should be able to adapt the code to fit your statistical models. We would advise you to first see the Jupyter notebook demo. The notebook provides an example of how to implement the target statistical model as well as the variational model of the conditionals, you can find further examples in cdi/models directory. If you intend to use a variational family that is different to ours you will also need to implement the corresponding sampling functions here.

Owner
Vaidotas Šimkus
PhD candidate in Data Science at the University of Edinburgh. Interested in deep generative models, variational inference, and the Bayesian principle.
Vaidotas Šimkus
Neural style transfer as a class in PyTorch

pt-styletransfer Neural style transfer as a class in PyTorch Based on: https://github.com/alexis-jacq/Pytorch-Tutorials Adds: StyleTransferNet as a cl

Tyler Kvochick 31 Jun 27, 2022
Speech Emotion Recognition with Fusion of Acoustic- and Linguistic-Feature-Based Decisions

APSIPA-SER-with-A-and-T This code is the implementation of Speech Emotion Recognition (SER) with acoustic and linguistic features. The network model i

kenro515 3 Jan 04, 2023
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang News 2021.12.5 Release Deep

145 Jan 05, 2023
Action Recognition for Self-Driving Cars

Action Recognition for Self-Driving Cars This repo contains the codes for the 2021 Fall semester project "Action Recognition for Self-Driving Cars" at

VITA lab at EPFL 3 Apr 07, 2022
This project is the PyTorch implementation of our CVPR 2022 paper:

Requirements and Dependency Install PyTorch with CUDA (for GPU). (Experiments are validated on python 3.8.11 and pytorch 1.7.0) (For visualization if

Lei Huang 23 Nov 29, 2022
Code for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss"

PurNet Project for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss" Abstract Image-based salie

Jinming Su 4 Aug 25, 2022
The repository is for safe reinforcement learning baselines.

Safe-Reinforcement-Learning-Baseline The repository is for Safe Reinforcement Learning (RL) research, in which we investigate various safe RL baseline

172 Dec 19, 2022
Deep generative models of 3D grids for structure-based drug discovery

What is liGAN? liGAN is a research codebase for training and evaluating deep generative models for de novo drug design based on 3D atomic density grid

Matt Ragoza 152 Jan 03, 2023
Reproduces ResNet-V3 with pytorch

ResNeXt.pytorch Reproduces ResNet-V3 (Aggregated Residual Transformations for Deep Neural Networks) with pytorch. Tried on pytorch 1.6 Trains on Cifar

Pau Rodriguez 481 Dec 23, 2022
Machine Learning Framework for Operating Systems - Brings ML to Linux kernel

KML: A Machine Learning Framework for Operating Systems & Storage Systems Storage systems and their OS components are designed to accommodate a wide v

File systems and Storage Lab (FSL) 186 Nov 24, 2022
code for `Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation`

Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation (CVPR 2021) Introduction PBR is a conceptually simple yet effective

H.Chen 143 Jan 05, 2023
Xintao 1.4k Dec 25, 2022
Listing arxiv - Personalized list of today's articles from ArXiv

Personalized list of today's articles from ArXiv Print and/or send to your gmail

Lilianne Nakazono 5 Jun 17, 2022
Pytorch implementation of ProjectedGAN

ProjectedGAN-pytorch Pytorch implementation of ProjectedGAN (https://arxiv.org/abs/2111.01007) Note: this repository is still under developement. @InP

Dominic Rampas 17 Dec 14, 2022
BoxInst: High-Performance Instance Segmentation with Box Annotations

Introduction This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge, the paper is BoxInst: High-Performan

88 Dec 21, 2022
Welcome to The Eigensolver Quantum School, a quantum computing crash course designed by students for students.

TEQS Welcome to The Eigensolver Quantum School, a crash course designed by students for students. The aim of this program is to take someone who has n

The Eigensolvers 53 May 18, 2022
The ARCA23K baseline system

ARCA23K Baseline System This is the source code for the baseline system associated with the ARCA23K dataset. Details about ARCA23K and the baseline sy

4 Jul 02, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN in PyTorch Official implementation of StyleCariGAN:Caricature Generation via StyleGAN Feature Map Modulation in PyTorch Requirements PyTo

PeterZhouSZ 49 Oct 31, 2022
2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

Aigege 8 Mar 31, 2022
Datasets, tools, and benchmarks for representation learning of code.

The CodeSearchNet challenge has been concluded We would like to thank all participants for their submissions and we hope that this challenge provided

GitHub 1.8k Dec 25, 2022