PAIRED in PyTorch 🔥

Related tags

Deep Learningpaired
Overview

License

PAIRED

This codebase provides a PyTorch implementation of Protagonist Antagonist Induced Regret Environment Design (PAIRED), which was first introduced in "Emergent Complexity and Zero-Shot Transfer via Unsupervised Environment Design" (Dennis et al, 2020). This implementation comes integrated with custom adversarial maze environments based on MiniGrid environment (Chevalier-Boisvert et al, 2018), as used in Dennis et al, 2020.

Unsupervised environment design (UED) methods propose a curriculum of tasks or environment instances (levels) that aims to foster more sample efficient learning and robust policies. PAIRED performs unsupervised environment design (UED) using a three-player game among two student agents—the protagonist and antagonist—and an adversary. The antagonist is allied with the adversary, which proposes new environment instances (or levels) aiming to maximize the regret of the protagonist, estimated as the difference in returns achieved by the student agents across a batch of rollouts on proposed levels.

PAIRED has a strong guarantee of robustness in that at Nash equilibrium, it provably induces a minimax regret policy for the protagonist, which means that the protagonist optimally trades off regret across all possible levels that can be proposed by the adversary.

UED algorithms included

  • PAIRED (Protagonist Antagonist Induced Regret Environment Design)
  • Minimax
  • Domain randomization

Set up

To install the necessary dependencies, run the following commands:

conda create --name paired python=3.8
conda activate paired
pip install -r requirements.txt

git clone https://github.com/openai/baselines.git
cd baselines
pip install -e .
cd ..

Configuration

Detailed descriptions of the various command-line arguments for the main training script, train.py can be found in arguments.py.

Experiments

MiniGrid benchmark results

For convenience, configuration json files are provided to generate the commands to run the specific experimental settings featured in Dennis et al, 2020. To generate the command to launch 1 run of the experiment codified by the configuration file config.json in the local folder train_scripts/configs, simply run the following, and copy and paste the output into your command line.

python train_scripts/make_cmd.py --json config --num_trials 1

Alternatively, you can run the following to copy the command directly to your clipboard:

python train_scripts/make_cmd.py --json config --num_trials 1 | pbcopy

By default, each experiment run will generate a folder in ~/logs/paired named after the --xpid argument passed into the the train command. This folder will contain log outputs in logs.csv and periodic screenshots of generated levels in the directory screenshots. Each screenshot uses the naming convention update_<number of PPO updates>.png. The latest model checkpoint will be output to model.tar, and archived model checkpoints are also saved according to the naming convention model_<number of PPO updates>.tar.

The json files for reproducing various MiniGrid experiments from Dennis et al, 2020 are listed below:

Method json config
PAIRED minigrid/paired.json
Minimax minigrid/minimax.json
DR minigrid/dr.json

Evaluation

You can use the following command to batch evaluate all trained models whose output directory shares the same <xpid_prefix> before the indexing _[0-9]+ suffix:

python -m eval \
--base_path "~/logs/paired" \
--prefix '<xpid prefix>' \
--num_processes 2 \
--env_names \
'MultiGrid-SixteenRooms-v0,MultiGrid-Labyrinth-v0,MultiGrid-Maze-v0'
--num_episodes 100 \
--model_tar model
Owner
UCL DARK Lab
UCL Deciding, Acting, and Reasoning with Knowledge (DARK) Lab
UCL DARK Lab
Wenzhou-Kean University AI-LAB

AI-LAB This is Wenzhou-Kean University AI-LAB. Our research interests are in Computer Vision and Natural Language Processing. Computer Vision Please g

WKU AI-LAB 10 May 05, 2022
Code for the CIKM 2019 paper "DSANet: Dual Self-Attention Network for Multivariate Time Series Forecasting".

Dual Self-Attention Network for Multivariate Time Series Forecasting 20.10.26 Update: Due to the difficulty of installation and code maintenance cause

Kyon Huang 223 Dec 16, 2022
Multi-Person Extreme Motion Prediction

Multi-Person Extreme Motion Prediction Implementation for paper Wen Guo, Xiaoyu Bie, Xavier Alameda-Pineda, Francesc Moreno-Noguer, Multi-Person Extre

GUO-W 38 Nov 15, 2022
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Ren Yurui 261 Jan 09, 2023
Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis

Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis Requirements python 3.7 pytorch-gpu 1.7 numpy 1.19.4 pytorch_

12 Oct 29, 2022
[CVPR'22] Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast

wseg Overview The Pytorch implementation of Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast. [arXiv] Though image-level weakly

Ye Du 96 Dec 30, 2022
Advanced yabai wooting scripts

Yabai Wooting scripts Installation requirements Both https://github.com/xiamaz/python-yabai-client and https://github.com/xiamaz/python-wooting-rgb ne

Max Zhao 3 Dec 31, 2021
GEA - Code for Guided Evolution for Neural Architecture Search

Efficient Guided Evolution for Neural Architecture Search Usage Create a conda e

6 Jan 03, 2023
This is the repo for Uncertainty Quantification 360 Toolkit.

UQ360 The Uncertainty Quantification 360 (UQ360) toolkit is an open-source Python package that provides a diverse set of algorithms to quantify uncert

International Business Machines 207 Dec 30, 2022
Probabilistic-Monocular-3D-Human-Pose-Estimation-with-Normalizing-Flows

Probabilistic-Monocular-3D-Human-Pose-Estimation-with-Normalizing-Flows This is the official implementation of the ICCV 2021 Paper "Probabilistic Mono

62 Nov 23, 2022
An Object Oriented Programming (OOP) interface for Ontology Web language (OWL) ontologies.

Enabling a developer to use Ontology Web Language (OWL) along with its reasoning capabilities in an Object Oriented Programming (OOP) paradigm, by pro

TheEngineRoom-UniGe 7 Sep 23, 2022
Simple Pixelbot for Diablo 2 Resurrected written in python and opencv.

Simple Pixelbot for Diablo 2 Resurrected written in python and opencv. Obviously only use it in offline mode as it is against the TOS of Blizzard to use it in online mode!

468 Jan 03, 2023
Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

41 Jan 03, 2023
[ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing

NeRFlow [ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing Datasets The pouring dataset used for experiments can be download he

44 Dec 20, 2022
Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch

Lie Transformer - Pytorch (wip) Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch. Only the SE3 version will be present in thi

Phil Wang 78 Oct 26, 2022
Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Det

123 Jan 04, 2023
End-To-End Memory Network using Tensorflow

MemN2N Implementation of End-To-End Memory Networks with sklearn-like interface using Tensorflow. Tasks are from the bAbl dataset. Get Started git clo

Dominique Luna 339 Oct 27, 2022
Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al.

nam-pytorch Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al. [abs, pdf] Installation You can access nam-pytorch vi

Rishabh Anand 11 Mar 14, 2022
PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime

Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime Created by Prarthana Bhattacharyya. Disclaimer: This is n

Prarthana Bhattacharyya 5 Nov 08, 2022
The easiest tool for extracting radiomics features and training ML models on them.

Simple pipeline for experimenting with radiomics features Installation git clone https://github.com/piotrekwoznicki/ClassyRadiomics.git cd classrad pi

Piotr Woźnicki 17 Aug 04, 2022