Kaggle | 9th place (part of) solution for the Bristol-Myers Squibb – Molecular Translation challenge

Overview

Part of the 9th place solution for the Bristol-Myers Squibb – Molecular Translation challenge translating images containing chemical structures into InChI (International Chemical Identifier) texts.

This repo is partially based on the following resources:

Requirements

  • install and activate the conda environment
  • download and extract the data into /data/bms/
  • extract and move sample_submission_with_length.csv.gz into /data/bms/
  • tokenize training inputs: python datasets/prepocess2.py
  • if you want to use pseudo labeling, execute: python datasets/pseudo_prepocess2.py your_submission_file.csv
  • if you want to use external images, you can create with the following commands:
python r09_create_images_from_allowed_inchi.py
python datasets/extra_prepocess2.py 
  • and also install apex

Training

This repo supports training any VIT/SWIN/CAIT transformer models from timm as encoder together with the fairseq transformer decoder.

Here is an example configuration to train a SWIN swin_base_patch4_window12_384 as encoder and 12 layer 16 head fairseq decoder:

python -m torch.distributed.launch --nproc_per_node=N train.py --logdir=logdir/ \
    --pipeline --train-batch-size=50 --valid-batch-size=128 --dataload-workers-nums=10 --mixed-precision --amp-level=O2  \
    --aug-rotate90-p=0.5 --aug-crop-p=0.5 --aug-noise-p=0.9 --label-smoothing=0.1 \
    --encoder-lr=1e-3 --decoder-lr=1e-3 --lr-step-ratio=0.3 --lr-policy=step --optim=adam --lr-warmup-steps=1000 --max-epochs=20 --weight-decay=0 --clip-grad-norm=1 \
    --verbose --image-size=384 --model=swin_base_patch4_window12_384 --loss=ce --embed-dim=1024 --num-head=16 --num-layer=12 \
    --fold=0 --train-dataset-size=0 --valid-dataset-size=65536 --valid-dataset-non-sorted

For pseudo labeling, use --pseudo=pseudo.pkl. If you want subsample the pseudo dataset, use: --pseudo-dataset-size=448000. For using external images, use --extra (--extra-dataset-size=448000).

After training, you can also use Stochastic Weight Averaging (SWA) which gives a boost around 0.02:

python swa.py --image-size=384 --input logdir/epoch-17.pth,logdir/epoch-18.pth,logdir/epoch-19.pth,logdir/epoch-20.pth

Inference

Evaluation:

python -m torch.distributed.launch --nproc_per_node=N eval.py --mixed-precision --batch-size=128 swa_model.pth

Inference:

python -m torch.distributed.launch --nproc_per_node=N inference.py --mixed-precision --batch-size=128 swa_model.pth

Normalization with RDKit:

./normalize_inchis.sh submission.csv
Owner
Erdene-Ochir Tuguldur
Берлиний Техникийн Их Сургууль
Erdene-Ochir Tuguldur
Weakly Supervised Segmentation by Tensorflow.

Weakly Supervised Segmentation by Tensorflow. Implements semantic segmentation in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

CHENG-YOU LU 52 Dec 27, 2022
Unet network with mean teacher for altrasound image segmentation

Unet network with mean teacher for altrasound image segmentation

5 Nov 21, 2022
A pytorch implementation of Pytorch-Sketch-RNN

Pytorch-Sketch-RNN A pytorch implementation of https://arxiv.org/abs/1704.03477 In order to draw other things than cats, you will find more drawing da

Alexis David Jacq 172 Dec 12, 2022
Segmentation Training Pipeline

Segmentation Training Pipeline This package is a part of Musket ML framework. Reasons to use Segmentation Pipeline Segmentation Pipeline was developed

Musket ML 52 Dec 12, 2022
PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal Convolutions for Action Recognition"

R2Plus1D-PyTorch PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal

Irhum Shafkat 342 Dec 16, 2022
Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images (ICCV 2021)

Table of Content Introduction Getting Started Datasets Installation Experiments Training & Testing Pretrained models Texture fine-tuning Demo Toward R

VinAI Research 42 Dec 05, 2022
On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization

On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization This repository contains the evaluation code and alternative pseudo ground truth

Torsten Sattler 36 Dec 22, 2022
Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch

Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch Reference Paper URL Author: Yi Tay, Dara Bahri, Donald Metzler

Myeongjun Kim 66 Nov 30, 2022
Code for our work "Activation to Saliency: Forming High-Quality Labels for Unsupervised Salient Object Detection".

A2S-USOD Code for our work "Activation to Saliency: Forming High-Quality Labels for Unsupervised Salient Object Detection". Code will be released upon

15 Dec 16, 2022
A series of Jupyter notebooks with Chinese comment that walk you through the fundamentals of Machine Learning and Deep Learning in python using Scikit-Learn and TensorFlow.

Hands-on-Machine-Learning 目的 这份笔记旨在帮助中文学习者以一种较快较系统的方式入门机器学习, 是在学习Hands-on Machine Learning with Scikit-Learn and TensorFlow这本书的 时候做的个人笔记: 此项目的可取之处 原书的

Baymax 1.5k Dec 21, 2022
Implementation of "Learning Multi-Granular Hypergraphs for Video-Based Person Re-Identification"

hypergraph_reid Implementation of "Learning Multi-Granular Hypergraphs for Video-Based Person Re-Identification" If you find this help your research,

62 Dec 21, 2022
A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking.

BeatNet A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking. This repository

Mojtaba Heydari 157 Dec 27, 2022
Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper

Divide and Remaster Utility Tools Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper The DnR d

Darius Petermann 46 Dec 11, 2022
PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules

Dynamic Routing Between Capsules - PyTorch implementation PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules from Sara Sabour,

Adam Bielski 475 Dec 24, 2022
A simple baseline for 3d human pose estimation in tensorflow. Presented at ICCV 17.

3d-pose-baseline This is the code for the paper Julieta Martinez, Rayat Hossain, Javier Romero, James J. Little. A simple yet effective baseline for 3

Julieta Martinez 1.3k Jan 03, 2023
Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis for Eyewear Devices

EMOShip This repository contains the EMO-Film dataset described in the paper "Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis

1 Nov 18, 2022
Code for our EMNLP 2021 paper “Heterogeneous Graph Neural Networks for Keyphrase Generation”

GATER This repository contains the code for our EMNLP 2021 paper “Heterogeneous Graph Neural Networks for Keyphrase Generation”. Our implementation is

Jiacheng Ye 12 Nov 24, 2022
Distributed Arcface Training in Pytorch

Distributed Arcface Training in Pytorch

3 Nov 23, 2021
LiDAR R-CNN: An Efficient and Universal 3D Object Detector

LiDAR R-CNN: An Efficient and Universal 3D Object Detector Introduction This is the official code of LiDAR R-CNN: An Efficient and Universal 3D Object

TuSimple 295 Jan 05, 2023
Code for paper Novel View Synthesis via Depth-guided Skip Connections

Novel View Synthesis via Depth-guided Skip Connections Code for paper Novel View Synthesis via Depth-guided Skip Connections @InProceedings{Hou_2021_W

8 Mar 14, 2022