Computational inteligence project on faces in the wild dataset

Overview

Table of Contents

  1. The general idea
  2. How these scripts work?
    1. Loading data
      1. Needed modules and global variables
      2. Parsing the arrays in dataset
      3. Extracting arrays for parsing
      4. Loading the dataset
    2. Adaboosted Decision Trees
      1. Needed modules and global variables
      2. Initializing global variables
      3. Initializing the meta classifier
    3. Random Forrest
      1. Needed modules and global variables
      2. Initializing global variables
      3. Initializing the meta classifier
    4. Bagged MLPs
      1. Needed modules and global variables
      2. Initializing global variables
      3. Initializing the meta classifier
    5. Some sort of bootstraping + Soft voting
      1. Needed modules and global variables
      2. Initializing global variables
      3. The pipeline
    6. The main script
      1. Needed modules
      2. Loading and manuplating the data
      3. Preprocessing data
      4. Using what have created so far
    7. Results
      1. Overall view
      2. Detailed discussion

The general idea

The general idea behind ensemble learning is that instead of a specific algorithm for classification, we have a meta classifier that takes advantage of couple of classic classifier. In this project we have these 4:

  1. Adaboosted decision trees
  2. Random forrest
  3. Bagged MLPs
  4. Some sort of bootstraping + Soft voting

It’s worth mentioning that every hard coded parameter is retrieved from previous projects and tests.

How these scripts work?

Loading data

Needed modules and global variables

from os.path import exists, join
import numpy as np


seprator = "\t"
dataset_folder = "lfw"
train_file = "pairsDevTrain.txt"
test_file = "pairsDevTest.txt"

Parsing the arrays in dataset

def parse_array(stringed_array):
    #parse the stringed array
    #return the array
    result = []
    for string in stringed_array:
        if "[" in string:
            string = string[2:]
        if "]" in string:
            string = string[:-2]
        for token in string.split():
            result.append(float(token))
    return np.array(result)

Extracting arrays for parsing

We need to figure out path to each txt file in dataset in order to load them as a string and then parse them and load them into memory using previous function.

def extract_array_from_line(path, line):
    #Name _ Pic.No1 _ Pic.No2
    #extract array from Pics and return them
    try:
        name, pic1, pic2 = line.split(seprator)
        pic1 = int(pic1)
        pic2 = int(pic2)
        pic1 = f'{name}_{pic1:04d}.txt'
        pic2 = f'{name}_{pic2:04d}.txt'

        final_path = join(path, name)
        final_pic1 = join(final_path, pic1)
        final_pic2 = join(final_path, pic2)
        parsed_pic1 = open(final_pic1, 'r').readlines()
        parsed_pic2 = open(final_pic2, 'r').readlines()


        parsed_pic1 = parse_array(parsed_pic1)
        parsed_pic2 = parse_array(parsed_pic2)
        return np.array([parsed_pic1, parsed_pic2])
    except Exception:
        name1, pic1, name2, pic2 = line.split(seprator)
        pic1 = int(pic1)
        pic2 = int(pic2)
        pic1 = f'{name1}_{pic1:04d}.txt'
        pic2 = f'{name2}_{pic2:04d}.txt'

        final_path1 = join(path, name1)
        final_path2 = join(path, name2)

        final_pic1 = join(final_path1, pic1)
        final_pic2 = join(final_path2, pic2)

        parsed_pic1 = open(final_pic1, 'r').readlines()
        parsed_pic2 = open(final_pic2, 'r').readlines()


        parsed_pic1 = parse_array(parsed_pic1)
        parsed_pic2 = parse_array(parsed_pic2)
        return np.array([parsed_pic1, parsed_pic2])

Loading the dataset

Now we use all the functions above to load our dataset.

def load(path):
    #check if the file exists
    # if not, return None
    # if yes, load the data
    # return the data
    if not exists(path):
        return None

    data_path = join(path, dataset_folder)
    train_path = join(path, train_file)
    test_path = join(path, test_file)
    train_data_plus = []
    test_data_plus = []
    train_data_negative = []
    test_data_negative = []
    train_path_handle = open(train_path, 'r')
    test_path_handle = open(test_path, 'r')

    for i, line in enumerate(train_path_handle.readlines()):
        if i == 0:
            count = int(line)
            continue
        if i <= count:
            train_data_plus.append(extract_array_from_line(data_path, line))
        else:
            train_data_negative.append(extract_array_from_line(data_path, line))

    for i, line in enumerate(test_path_handle.readlines()):
        if i == 0:
            count = int(line)
            continue
        if i <= count:
            test_data_plus.append(extract_array_from_line(data_path, line))
        else:
            test_data_negative.append(extract_array_from_line(data_path, line))

    return np.array(train_data_plus), np.array(train_data_negative), np.array(test_data_plus), np.array(test_data_negative)

Adaboosted Decision Trees

Sklearn’s implementation of all meta classifiers is used in this project.

Needed modules and global variables

from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score

train_data = None
train_label = None
test_data = None
test_label = None

Initializing global variables

The way I’ve modeled the data for this meta classifier, forms a vector from concatenating vector of each image, In other words imagine we have extracted parts of people’s DNA and we want to know whether they are related or not, First we form a table containing DNA parts of each of those people’s DNA in each row and we want our decision tree to figure out existence of any blood relationship. We are doing the samething here, each vector being image’s DNA and their concatenation being each row. We transform the data into our desired shape and then use this function to load them.

def init_vars(_train_data, _train_label, _test_data, _test_label):
    #Initializez global variables
    global train_data
    global train_label
    global test_data
    global test_label
    train_data = _train_data
    train_label = _train_label
    test_data = _test_data
    test_label = _test_label

Initializing the meta classifier

First we need to construct a decision tree classifier with our desired parameters and then passing that to our meta classifier and at the end train the meta classifier and the measure its performance. That’s what we do for all of meta classifiers in this project.

def get_populated_dtc(max_depth=8, min_samples_split=2, min_samples_leaf=4, min_impurity_decrease=0.0):
    #Return a DecisionTreeClassifier object
    dtc = DecisionTreeClassifier(max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_impurity_decrease=min_impurity_decrease)
    return dtc

def adaboosted_dt():
    ab_dt = AdaBoostClassifier(
        get_populated_dtc(), n_estimators=100
    )

    return ab_dt.fit(train_data, train_label)

def test_accuracy(trained_model):
    test1 = accuracy_score(test_label, trained_model.predict(test_data))
    train1 = accuracy_score(train_label, trained_model.predict(train_data))
    return test1, train1

I’ll talk about its results and performance at the end of this document.

Random Forrest

Needed modules and global variables

from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
import numpy as np

train_data = None
train_label = None
test_data = None
test_label = None

Initializing global variables

Here I’ve experimented with a different way of modeling data, I’ve imagined that each vector is not just an array of features but it actually represents and actual vector in a 512 dimension and their differences and their distance can mean something, So this time I create a vector of size 513 which its first 512 elements are absolute value of two vectors and its last element is their distance.

def preprocess_data(d):
    #Calculate vector distance and absolute value of their difference
    res1 = []
    res2 = []
    for data in d:
        res = np.subtract(data[0], data[1])
        res1.append(np.abs(res))
        res2.append(np.linalg.norm(res))
    res = [np.append(x, y) for x, y in zip(res1, res2)]
    return np.array(res)

def init_vars(_train_data, _train_label, _test_data, _test_label):
    #Initializez global variables
    global train_data
    global train_label
    global test_data
    global test_label
    train_data = _train_data.reshape(len(_train_data), 2, -1)
    train_label = _train_label
    test_data = _test_data.reshape(len(_test_data), 2, -1)
    test_label = _test_label
    train_data = preprocess_data(train_data)
    test_data = preprocess_data(test_data)

Initializing the meta classifier

def test_accuracy(trained_model):
    test1 = accuracy_score(test_label, trained_model.predict(test_data))
    train1 = accuracy_score(train_label, trained_model.predict(train_data))
    return test1, train1

def handle_random_forrest():
    rfc = RandomForestClassifier(max_depth=8, min_samples_split=2, min_samples_leaf=4, min_impurity_decrease=0.0)
    return rfc.fit(train_data, train_label)

Bagged MLPs

Needed modules and global variables

from sklearn.ensemble import BaggingClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import accuracy_score, adjusted_rand_score

train_data = None
train_label = None
test_data = None
test_label = None

Initializing global variables

Here I’ve used the same modeling as what I used in Adaboosted Decision Trees.

def init_vars(_train_data, _train_label, _test_data, _test_label):
    #Initializez global variables
    global train_data
    global train_label
    global test_data
    global test_label
    train_data = _train_data
    train_label = _train_label
    test_data = _test_data
    test_label = _test_label

Initializing the meta classifier

def get_populated_mlpc():
    #Return a MLPClassifier object
    mlpc = MLPClassifier()
    mlpc.set_params(hidden_layer_sizes=(200, 80, 20), alpha=0.032, random_state=1, solver="adam", activation="relu", max_iter=500)
    return mlpc

def bagged_mlp():
    bg_mlpc = BaggingClassifier(base_estimator= get_populated_mlpc(), n_estimators=20, random_state=1, n_jobs=12)
    return bg_mlpc.fit(train_data, train_label)

def test_accuracy(trained_model):
    test1 = accuracy_score(test_label, trained_model.predict(test_data))
    train1 = accuracy_score(train_label, trained_model.predict(train_data))
    return test1, train1

Some sort of bootstraping + Soft voting

Here I’ve taken advantage of three different classifiers:

  1. SVM
  2. MLP
  3. DT

I loop over them and in each iteration train them on a random subset of dataset and modify an array of weights based on their performance and at the very end I pass them to a VotingClassifier and train that meta classifier on the whole dataset.

Needed modules and global variables

from sklearn.neural_network import MLPClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.ensemble import VotingClassifier

from sklearn.metrics import accuracy_score
import numpy as np

train_data = None
train_label = None
test_data = None
test_label = None

Initializing global variables

Here I’ve used same modeling as RandomForrest.

def preprocess_data(d):
    #Calculate vector distance and absolute value of their difference
    res1 = []
    res2 = []
    for data in d:
        res = np.subtract(data[0], data[1])
        res1.append(np.abs(res))
        res2.append(np.linalg.norm(res))
    res = [np.append(x, y) for x, y in zip(res1, res2)]
    return np.array(res)

def init_vars(_train_data, _train_label, _test_data, _test_label):
    #Initializez global variables
    global train_data
    global train_label
    global test_data
    global test_label
    train_data = _train_data.reshape(len(_train_data), 2, -1)
    train_label = _train_label
    test_data = _test_data.reshape(len(_test_data), 2, -1)
    test_label = _test_label
    train_data = preprocess_data(train_data)
    test_data = preprocess_data(test_data)

The pipeline

last_acc[0]: weights[0] += 0.05 elif mlp_acc > last_acc[1]: weights[1] += 0.05 elif dt_acc > last_acc[2]: weights[2] += 0.05 last_acc = [svm_acc, mlp_acc, dt_acc] if debug: print("**SVM: {}, MLP: {}, DT: {}**".format(svm_acc, mlp_acc, dt_acc)) svm_acc = svm_acc * weights[0] mlp_acc = mlp_acc * weights[1] dt_acc = dt_acc * weights[2] if debug: print("##SVM: {}, MLP: {}, DT: {}##".format(svm_acc, mlp_acc, dt_acc)) if svm_acc > mlp_acc and svm_acc > dt_acc: weights[0] += 0.1 elif mlp_acc > svm_acc and mlp_acc > dt_acc: weights[1] += 0.1 elif dt_acc > svm_acc and dt_acc > mlp_acc: weights[2] += 0.1 vt_svm_mlp_dt = VotingClassifier(estimators=[ ('svm', svm), ('mlp', mlp), ('dt', dt)], voting='soft', weights=weights, n_jobs=12) res = vt_svm_mlp_dt.fit(train_data, train_label) if debug: print("Final accuracy: {}".format(test_accuracy(res)[0])) return res">
def get_random_samples(number_of_samples=3):
    #Return a list of random samples from dataset
    res = []
    for _ in range(number_of_samples):
        indexes = np.random.choice(len(train_data), size=(int(len(train_data) / number_of_samples)), replace=False)
        res.append(indexes)
    return res

def test_accuracy_pipeline(trained_model):
    test1 = accuracy_score(test_label, trained_model.predict(test_data))
    return test1

def test_accuracy(trained_model):
    test1 = accuracy_score(test_label, trained_model.predict(test_data))
    train1 = accuracy_score(train_label, trained_model.predict(train_data))
    return test1, train1

def pipeline(debug=False):
    svm = SVC(decision_function_shape="ovr", kernel="rbf", probability=True)
    mlp = MLPClassifier(hidden_layer_sizes=(40, 30, 20, 30, 40), alpha=0.032, random_state=1, solver="adam", activation="relu", max_iter=500)
    dt = DecisionTreeClassifier(max_depth=64, min_samples_split=2, min_samples_leaf=4, min_impurity_decrease=0.0)
    weights = [1 / 3, 1 / 3, 1 / 3]
    last_acc = [0, 0, 0]
    for _ in range(10):
        samples = get_random_samples()
        svm.fit(train_data[samples[0]], train_label[samples[0]])
        mlp.fit(train_data[samples[1]], train_label[samples[1]])
        dt.fit(train_data[samples[2]], train_label[samples[2]])
        svm_acc = test_accuracy_pipeline(svm)
        mlp_acc = test_accuracy_pipeline(mlp)
        dt_acc = test_accuracy_pipeline(dt)
        if svm_acc < last_acc[0]:
            weights[0] -= 0.05
        elif mlp_acc < last_acc[1]:
            weights[1] -= 0.05
        elif dt_acc < last_acc[2]:
            weights[2] -= 0.05
        if svm_acc > last_acc[0]:
            weights[0] += 0.05
        elif mlp_acc > last_acc[1]:
            weights[1] += 0.05
        elif dt_acc > last_acc[2]:
            weights[2] += 0.05
        last_acc = [svm_acc, mlp_acc, dt_acc]
        if debug:
            print("**SVM: {}, MLP: {}, DT: {}**".format(svm_acc, mlp_acc, dt_acc))
        svm_acc = svm_acc * weights[0]
        mlp_acc = mlp_acc * weights[1]
        dt_acc = dt_acc * weights[2]
        if debug:
            print("##SVM: {}, MLP: {}, DT: {}##".format(svm_acc, mlp_acc, dt_acc))
        if svm_acc > mlp_acc and svm_acc > dt_acc:
            weights[0] += 0.1
        elif mlp_acc > svm_acc and mlp_acc > dt_acc:
            weights[1] += 0.1
        elif dt_acc > svm_acc and dt_acc > mlp_acc:
            weights[2] += 0.1


    vt_svm_mlp_dt = VotingClassifier(estimators=[
        ('svm', svm), ('mlp', mlp), ('dt', dt)],
        voting='soft', weights=weights, n_jobs=12)

    res = vt_svm_mlp_dt.fit(train_data, train_label)
    if debug:
        print("Final accuracy: {}".format(test_accuracy(res)[0]))
    return res

The main script

Needed modules

import numpy as np
from utils.data_loader import load
import utils.ensemble_dt as edt
import utils.ensemble_bag_mlp as ebm
import utils.svm_mlp_dt_combo as smdt
import utils.ensemble_rf as erf
from sklearn import preprocessing
from tabulate import tabulate

Loading and manuplating the data

Here I transform loaded data into the form I explained in AdaBoostClassifier section.

train_plus, train_negative, test_plus, test_negative = load("/home/toorajtaraz/Downloads/project/")
train_data_count = train_plus.shape[0]
test_data_count = test_plus.shape[0]

train_plus = train_plus.reshape((train_data_count, -1))
train_negative = train_negative.reshape((train_data_count, -1))
test_plus = test_plus.reshape((test_data_count, -1))
test_negative = test_negative.reshape((test_data_count, -1))

train_data = []
train_label = []

test_data = []
test_label = []

for x in train_plus:
    train_data.append(x)
    train_label.append(1)

for x in train_negative:
    train_data.append(x)
    train_label.append(0)

for x in test_plus:
    test_data.append(x)
    test_label.append(1)

for x in test_negative:
    test_data.append(x)
    test_label.append(0)

test_data = np.array(test_data)
train_data = np.array(train_data)
test_label = np.array(test_label)
train_label = np.array(train_label)

Preprocessing data

Sklearn Library offers a module that takes care of standardizing the data, this action improves convergence time and accuracy (at least based on what I witnessed).

scaler = preprocessing.StandardScaler().fit(train_data)
train_data = scaler.transform(train_data)

scaler = preprocessing.StandardScaler().fit(test_data)
test_data = scaler.transform(test_data)

Using what have created so far

edt.init_vars(train_data, train_label, test_data, test_label)
adaboosted_dt_acc = edt.test_accuracy(edt.adaboosted_dt())

ebm.init_vars(train_data, train_label, test_data, test_label)
bagged_mlp_acc = ebm.test_accuracy(ebm.bagged_mlp())

smdt.init_vars(train_data, train_label, test_data, test_label)
svm_mlp_dt_combo_acc = smdt.test_accuracy(smdt.pipeline(debug=True))

erf.init_vars(train_data, train_label, test_data, test_label)
random_forrest_acc = erf.test_accuracy(erf.handle_random_forrest())

Results

Overall view

TYPE                   TEST_P TRAIN_P 
AdaboostedDecisionTree 0.578     1    
      BaggedMLP        0.766  0.997273
      SVM_MLP_DT       0.844  0.963636
     RandomForest       0.81  0.985909

Detailed discussion

In case of AdaboostedDecisionTree, it performed as I excepted, very well on train dataset and poorly on test dataset due to over fitting. BaggedMLPs didn’t perform very well as excepted, just about 2000 data samples are not enough for training a MLP. At first I intended to extract data from dataset folder and train my model on a larger dataset, but I figured due to our point being related to the accuracy we achieve it wouldn’t be ethical :)) RandomForest and my customish algorithm performed better than the others. During my tests I concluded that SVM with RBF kernel performs the best and the ensemble final accuracy is really close to SVM’s accuracy, but I assume it wouldn’t be the case if we had a large enough dataset, in that case MLP would be the dominant model in voting.

Owner
tooraj taraz
experienced C developer, RUST lover, linux enthusiast and familiar with backend development(express.js, django, rocket)
tooraj taraz
PyTorch implementation of our method for adversarial attacks and defenses in hyperspectral image classification.

Self-Attention Context Network for Hyperspectral Image Classification PyTorch implementation of our method for adversarial attacks and defenses in hyp

22 Dec 02, 2022
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
Code release for our paper, "SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo"

SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo Thomas Kollar, Michael Laskey, Kevin Stone, Brijen Thananjeyan

68 Dec 14, 2022
This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

1 Oct 25, 2021
Neural Factorization of Shape and Reflectance Under An Unknown Illumination

NeRFactor [Paper] [Video] [Project] This is the authors' code release for: NeRFactor: Neural Factorization of Shape and Reflectance Under an Unknown I

Google 283 Jan 04, 2023
A particular navigation route using satellite feed and can help in toll operations & traffic managemen

How about adding some info that can quanitfy the stress on a particular navigation route using satellite feed and can help in toll operations & traffic management The current analysis is on the satel

Ashish Pandey 1 Feb 14, 2022
Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The original code is written in keras.

CasRel-pytorch-reimplement Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The o

longlongman 170 Dec 01, 2022
Pytorch implementation of DeePSiM

Pytorch implementation of DeePSiM

1 Nov 05, 2021
Train a deep learning net with OpenStreetMap features and satellite imagery.

DeepOSM Classify roads and features in satellite imagery, by training neural networks with OpenStreetMap (OSM) data. DeepOSM can: Download a chunk of

TrailBehind, Inc. 1.3k Nov 24, 2022
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 28 Nov 25, 2022
minimizer-space de Bruijn graphs (mdBG) for whole genome assembly

rust-mdbg: Minimizer-space de Bruijn graphs (mdBG) for whole-genome assembly rust-mdbg is an ultra-fast minimizer-space de Bruijn graph (mdBG) impleme

Barış Ekim 148 Dec 01, 2022
A Learning-based Camera Calibration Toolbox

Learning-based Camera Calibration A Learning-based Camera Calibration Toolbox Paper The pdf file can be found here. @misc{zhang2022learningbased,

Eason 14 Dec 21, 2022
I explore rock vs. mine prediction using a SONAR dataset

I explore rock vs. mine prediction using a SONAR dataset. Using a Logistic Regression Model for my prediction algorithm, I intend on predicting what an object is based on supervised learning.

Jeff Shen 1 Jan 11, 2022
Meta graph convolutional neural network-assisted resilient swarm communications

Resilient UAV Swarm Communications with Graph Convolutional Neural Network This repository contains the source codes of Resilient UAV Swarm Communicat

62 Dec 06, 2022
Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Vera 75 Dec 13, 2022
✨风纪委员会自动投票脚本,利用Github Action帮你进行裁决操作(为了让其他风纪委员有案件可判,本程序从中午12点才开始运行,有需要请自己修改运行时间)

风纪委员会自动投票 本脚本通过使用Github Action来实现B站风纪委员的自动投票功能,喜欢请给我点个STAR吧! 如果你不是风纪委员,在符合风纪委员申请条件的情况下,本脚本会自动帮你申请 投票时间是早上八点,如果有需要请自行修改.github/workflows/Judge.yml中的时间,

Pesy Wu 25 Feb 17, 2021
InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing

InsTrim The paper: InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing Build Prerequisite llvm-8.0-dev clang-8.0 cmake = 3.2 Make git cl

75 Dec 23, 2022
RoIAlign & crop_and_resize for PyTorch

RoIAlign for PyTorch This is a PyTorch version of RoIAlign. This implementation is based on crop_and_resize and supports both forward and backward on

Long Chen 530 Jan 07, 2023
PyTorch implementation of: Michieli U. and Zanuttigh P., "Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations", CVPR 2021.

Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations This is the official PyTorch implementation

Multimedia Technology and Telecommunication Lab 42 Nov 09, 2022
Pytorch implementation of face attention network

Face Attention Network Pytorch implementation of face attention network as described in Face Attention Network: An Effective Face Detector for the Occ

Hooks 312 Dec 09, 2022