Human motion synthesis using Unity3D

Overview

Human motion synthesis using Unity3D

Prerequisite:

Software: amc2bvh.exe, Unity 2017, Blender.
Unity: RockVR (Video Capture), scenes, character models Files:
Motion files: amc, asf or bvh formats.
Character models: fbx format.

Procedure

  1. If motion files in amc/asf format, run amc2bvh.exe to convert them to bvh
  2. Place all bvh files into "Desktop/New folder/bvh" (or modify script)
  3. Open Blender and run the bvh2fbx.py script. It will convert the motion files to fbx format which Unity can process and place them under the unity "Resources/Input"[1]
  4. Find the imported motion file in Unity and change its Animation Type to Humanoid under Rig. Check to make sure the model is mapped properly.
  5. Configure the different variations to record video (characters, camera angle, scene, lighting)
    1. For characters, add[2] or remove from the "characters" GameObject in Unity Editor for the ones desired. For new character added to the scene, add the "New Animation Controller"[3] in Asset to the character's controller in the "Animator" section.
    2. For camera, change the position of the DedicatedCapture GameObjects to the desired location. Add additional DedicatedCapture GameObjects for more angle. Read the documentation for RockVR Video Capture for more detail.
    3. For scene, check the desired scenes within the intro scene and run.
    4. For lighting, change the "lights" parameter in Automation.cs script. Add more values to the array for more variations in lighting angles.
  6. Start up the "intro" scene and run it from Unity Editor. Click "Start" button to start the problem.
  7. Adjust the desired resolution and framerate and click start. For initial run, leave all the counters to 0. For continuing runs enter the counters where the previous run left off. The videos will be recorded to "Documents/RockVR/Video"[4]

Note

  • [1] Converting too many bvh files at a time may result in Blender crashing. Try converting them in batches of smaller quantity (~50).
  • [2] To add a GameObject to a Scene in Unity, drag it from the Asset menu to a position in the Hierarchy menu or a position in the scene itself. You can also create an empty GameObject from the "GameObject->Create Empty" option.
  • [3] Depending on the framerate of the motion files, you may need to adjust the speed of the animation. To do this go to "Assets" and find the "New Animator Controller" and open it. Then click on "New State" and adjust the speed to framerate/24 (if 120 frames changes to 5, if 60 change to 2.5, etc). Also find the line "timeLeft = ((AnimationClip)clips[clipCounter]).length;" in the SwitchAnimation function and divide it by the speed.
  • [4] Unity will most likely freeze or crash if left running for too long. Adjust the counters in the "intro" scene to resume progress.

Scene Creation procedure

  1. To get a scene, either download a pre-built one or build one yourself using various 3d models for GameObjects.
  2. Create an empty GameObject named "characters" and place it at a location best suited for recording. Add a character to it to see if any adjusting or scaling is needed.
  3. Add DedicatedCapture GameObjects from the "RockVR/Video/Prefabs" folder to the scene in desired locations.
  4. Attach the AudioCapture script in "RockVR/Video/Scripts" folder to the main camera.
  5. Create an empty GameObject named "VideoCaptureCtrl" and attach the VideoCaptureCtrl script in "RockVR/Video/Scripts" to it. Also attach the Automation.cs script from "Scripts" to it as well.
  6. Add the first DedicatedCapture GameObject as well as the AudioCapture to the the VideoCaptureCtrl script.
  7. If there is no "Directional light" GameObject, create one.
  8. Add the created scene to build settings.
  9. Add a check box in the intro scene for the newly created scene and modify the scene "ProcessParameter" accordingly.

Additional characters

In the "characters" folder in Assets, there is a list of preprocessed characters I got from the Unity asset store for free.
To process new characters:

  1. Change its Animation type to Humanoid under Rig
  2. Fix any mapping problem for the bones of the character
  3. Remove the mapping on the bones for both hands. This could be done using the "New Human Template" in the Assets folder. (This is to avoid weird finger mapping from the animations)

Instructions on error handling

  • If you tried to terminate the program insider the Unity Editor, the ffmpeg.exe will still be running and result in unfinished video and audio files to remain in the videos folder. To solve this issue, simply terminate the ffmpeg.exe from task manager and delete the unfinished files.
  • Since the program freezes fairly often, a temporary save state feature is implemented. Once Unity froze, terminate it from task manager. Look into the videos folder and figure out what combination the next video should be. Enter the parameters where the last run left off in the "intro" scene (various counters) to pick up from there.

Local environment specs

  • OS: Microsoft Windows 10 Pro
  • Version: 10.0.16299 Build 16299
  • Processor: Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz, 2201 Mhz, 10 Core(s), 20 Logical Processor(s)
  • Total Physical Memory: 63.9 GB
  • GPU: NVIDIA Quadro M5000
Owner
Hao Xu
Hao Xu
SegNet including indices pooling for Semantic Segmentation with tensorflow and keras

SegNet SegNet is a model of semantic segmentation based on Fully Comvolutional Network. This repository contains the implementation of learning and te

Yuta Kamikawa 172 Dec 23, 2022
Analysis of Antarctica sequencing samples contaminated with SARS-CoV-2

Analysis of SARS-CoV-2 reads in sequencing of 2018-2019 Antarctica samples in PRJNA692319 The samples analyzed here are described in this preprint, wh

Jesse Bloom 4 Feb 09, 2022
Driller: augmenting AFL with symbolic execution!

Driller Driller is an implementation of the driller paper. This implementation was built on top of AFL with angr being used as a symbolic tracer. Dril

Shellphish 791 Jan 06, 2023
Pytorch implementation for A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose

A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose Paper | Website | Data A-NeRF: Articulated Neural Radiance F

Shih-Yang Su 172 Dec 22, 2022
ByteTrack with ReID module following the paradigm of FairMOT, tracking strategy is borrowed from FairMOT/JDE.

ByteTrack_ReID ByteTrack is the SOTA tracker in MOT benchmarks with strong detector YOLOX and a simple association strategy only based on motion infor

Han GuangXin 46 Dec 29, 2022
Dashboard for the COVID19 spread

COVID-19 Data Explorer App A streamlit Dashboard for the COVID-19 spread. The app is live at: [https://covid19.cwerner.ai]. New data is queried from G

Christian Werner 22 Sep 29, 2022
TDN: Temporal Difference Networks for Efficient Action Recognition

TDN: Temporal Difference Networks for Efficient Action Recognition Overview We release the PyTorch code of the TDN(Temporal Difference Networks).

Multimedia Computing Group, Nanjing University 326 Dec 13, 2022
Official code for Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset

Official code for our Interspeech 2021 - Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset [1]*. Visually-grounded spoken language datasets c

Ian Palmer 3 Jan 26, 2022
Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation

Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation Experiment Setting: CIFAR10 (downloaded and saved in ./DATA

John Seon Keun Yi 38 Dec 27, 2022
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.

TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN

Hila Chefer 221 Dec 13, 2022
The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation"

RegSeg The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation" Paper: arxiv D block Decoder Setup Install the

Roland 61 Dec 27, 2022
In this project, we develop a face recognize platform based on MTCNN object-detection netcwork and FaceNet self-supervised network.

模式识别大作业——人脸检测与识别平台 本项目是一个简易的人脸检测识别平台,提供了人脸信息录入和人脸识别的功能。前端采用 html+css+js,后端采用 pytorch,

Xuhua Huang 5 Aug 02, 2022
Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Google 89 Dec 22, 2022
Code for the CVPR 2021 paper: Understanding Failures of Deep Networks via Robust Feature Extraction

Welcome to Barlow Barlow is a tool for identifying the failure modes for a given neural network. To achieve this, Barlow first creates a group of imag

Sahil Singla 33 Dec 05, 2022
Unoffical reMarkable AddOn for Firefox.

reMarkable for Firefox (Download) This repo converts the offical reMarkable Chrome Extension into a Firefox AddOn published here under the name "Unoff

Jelle Schutter 45 Nov 28, 2022
Wav2Vec for speech recognition, classification, and audio classification

Soxan در زبان پارسی به نام سخن This repository consists of models, scripts, and notebooks that help you to use all the benefits of Wav2Vec 2.0 in your

Mehrdad Farahani 140 Dec 15, 2022
Code to reproduce the results in "Visually Grounded Reasoning across Languages and Cultures", EMNLP 2021.

marvl-code [WIP] This is the implementation of the approaches described in the paper: Fangyu Liu*, Emanuele Bugliarello*, Edoardo M. Ponti, Siva Reddy

25 Nov 15, 2022
Logistic Bandit experiments. Official code for the paper "Jointly Efficient and Optimal Algorithms for Logistic Bandits".

Code for the paper Jointly Efficient and Optimal Algorithms for Logistic Bandits, by Louis Faury, Marc Abeille, Clément Calauzènes and Kwang-Sun Jun.

Faury Louis 1 Jan 22, 2022
Aalto-cs-msc-theses - Listing of M.Sc. Theses of the Department of Computer Science at Aalto University

Aalto-CS-MSc-Theses Listing of M.Sc. Theses of the Department of Computer Scienc

Jorma Laaksonen 3 Jan 27, 2022
Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection

SAGA Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection Please refer to the Jupyter notebook (Example.ipynb) for an example of using t

9 Dec 28, 2022