Sane and flexible OpenAPI 3 schema generation for Django REST framework.

Overview

drf-spectacular

build-status-image codecov pypi-version docs

Sane and flexible OpenAPI 3.0 schema generation for Django REST framework.

This project has 3 goals:
  1. Extract as much schema information from DRF as possible.
  2. Provide flexibility to make the schema usable in the real world (not only toy examples).
  3. Generate a schema that works well with the most popular client generators.

The code is a heavily modified fork of the DRF OpenAPI generator, which is/was lacking all of the below listed features.

Features
  • Serializers modelled as components. (arbitrary nesting and recursion supported)
  • @extend_schema decorator for customization of APIView, Viewsets, function-based views, and @action
    • additional parameters
    • request/response serializer override (with status codes)
    • polymorphic responses either manually with PolymorphicProxySerializer helper or via rest_polymorphic's PolymorphicSerializer)
    • ... and more customization options
  • Authentication support (DRF natives included, easily extendable)
  • Custom serializer class support (easily extendable)
  • SerializerMethodField() type via type hinting or @extend_schema_field
  • i18n support
  • Tags extraction
  • Request/response/parameter examples
  • Description extraction from docstrings
  • Sane fallbacks
  • Sane operation_id naming (based on path)
  • Schema serving with SpectacularAPIView (Redoc and Swagger-UI views are also available)
  • Optional input/output serializer component split
  • Included support for:

For more information visit the documentation.

License

Provided by T. Franzel, Cashlink Technologies GmbH. Licensed under 3-Clause BSD.

Requirements

  • Python >= 3.6
  • Django (2.2, 3.1, 3.2)
  • Django REST Framework (3.10, 3.11, 3.12)

Installation

Install using pip...

$ pip install drf-spectacular

then add drf-spectacular to installed apps in settings.py

INSTALLED_APPS = [
    # ALL YOUR APPS
    'drf_spectacular',
]

and finally register our spectacular AutoSchema with DRF.

REST_FRAMEWORK = {
    # YOUR SETTINGS
    'DEFAULT_SCHEMA_CLASS': 'drf_spectacular.openapi.AutoSchema',
}

drf-spectacular ships with sane default settings that should work reasonably well out of the box. It is not necessary to specify any settings, but we recommend to specify at least some metadata.

SPECTACULAR_SETTINGS = {
    'TITLE': 'Your Project API',
    'DESCRIPTION': 'Your project description',
    'VERSION': '1.0.0',
    # OTHER SETTINGS
}

Release management

drf-spectacular deliberately stays below version 1.x.x to signal that every new version may potentially break you. For production we strongly recommend pinning the version and inspecting a schema diff on update.

With that said, we aim to be extremely defensive w.r.t. breaking API changes. However, we also acknowledge the fact that even slight schema changes may break your toolchain, as any existing bug may somehow also be used as a feature.

We define version increments with the following semantics. y-stream increments may contain potentially breaking changes to both API and schema. z-stream increments will never break the API and may only contain schema changes that should have a low chance of breaking you.

Take it for a spin

Generate your schema with the CLI:

$ ./manage.py spectacular --file schema.yml
$ docker run -p 80:8080 -e SWAGGER_JSON=/schema.yml -v ${PWD}/schema.yml:/schema.yml swaggerapi/swagger-ui

If you also want to validate your schema add the --validate flag. Or serve your schema directly from your API. We also provide convenience wrappers for swagger-ui or redoc.

from drf_spectacular.views import SpectacularAPIView, SpectacularRedocView, SpectacularSwaggerView
urlpatterns = [
    # YOUR PATTERNS
    path('api/schema/', SpectacularAPIView.as_view(), name='schema'),
    # Optional UI:
    path('api/schema/swagger-ui/', SpectacularSwaggerView.as_view(url_name='schema'), name='swagger-ui'),
    path('api/schema/redoc/', SpectacularRedocView.as_view(url_name='schema'), name='redoc'),
]

Usage

drf-spectacular works pretty well out of the box. You might also want to set some metadata for your API. Just create a SPECTACULAR_SETTINGS dictionary in your settings.py and override the defaults. Have a look at the available settings.

The toy examples do not cover your cases? No problem, you can heavily customize how your schema will be rendered.

Customization by using @extend_schema

Most customization cases should be covered by the extend_schema decorator. We usually get pretty far with specifying OpenApiParameter and splitting request/response serializers, but the sky is the limit.

from drf_spectacular.utils import extend_schema, OpenApiParameter, OpenApiExample
from drf_spectacular.types import OpenApiTypes

class AlbumViewset(viewset.ModelViewset)
    serializer_class = AlbumSerializer

    @extend_schema(
        request=AlbumCreationSerializer
        responses={201: AlbumSerializer},
    )
    def create(self, request):
        # your non-standard behaviour
        return super().create(request)

    @extend_schema(
        # extra parameters added to the schema
        parameters=[
            OpenApiParameter(name='artist', description='Filter by artist', required=False, type=str),
            OpenApiParameter(
                name='release',
                type=OpenApiTypes.DATE,
                location=OpenApiParameter.QUERY,
                description='Filter by release date',
                examples=[
                    OpenApiExample(
                        'Example 1',
                        summary='short optional summary',
                        description='longer description',
                        value='1993-08-23'
                    ),
                    ...
                ],
            ),
        ],
        # override default docstring extraction
        description='More descriptive text',
        # provide Authentication class that deviates from the views default
        auth=None,
        # change the auto-generated operation name
        operation_id=None,
        # or even completely override what AutoSchema would generate. Provide raw Open API spec as Dict.
        operation=None,
        # attach request/response examples to the operation.
        examples=[
            OpenApiExample(
                'Example 1',
                description='longer description',
                value=...
            ),
            ...
        ],
    )
    def list(self, request):
        # your non-standard behaviour
        return super().list(request)

    @extend_schema(
        request=AlbumLikeSerializer
        responses={204: None},
        methods=["POST"]
    )
    @extend_schema(description='Override a specific method', methods=["GET"])
    @action(detail=True, methods=['post', 'get'])
    def set_password(self, request, pk=None):
        # your action behaviour

More customization

Still not satisifed? You want more! We still got you covered. Visit customization for more information.

Testing

Install testing requirements.

$ pip install -r requirements.txt

Run with runtests.

$ ./runtests.py

You can also use the excellent tox testing tool to run the tests against all supported versions of Python and Django. Install tox globally, and then simply run:

$ tox
Owner
T. Franzel
T. Franzel
DocumentPy is a Python application that runs in a command-line interface environment, made for creating HTML documents.

DocumentPy DocumentPy is a Python application that runs in a command-line interface environment, made for creating HTML documents. Usage DocumentPy, a

Lotus 0 Jul 15, 2021
Convenient tools for using Swagger to define and validate your interfaces in a Pyramid webapp.

Convenient tools for using Swagger to define and validate your interfaces in a Pyramid webapp.

Scott Triglia 64 Sep 18, 2022
🐱‍🏍 A curated list of awesome things related to Hugo themes.

awesome-hugo-themes Automated deployment @ 2021-10-12 06:24:07 Asia/Shanghai &sorted=updated Theme Author License GitHub Stars Updated Blonde wamo MIT

13 Dec 12, 2022
Build documentation in multiple repos into one site.

mkdocs-multirepo-plugin Build documentation in multiple repos into one site. Setup Install plugin using pip: pip install git+https://github.com/jdoiro

Joseph Doiron 47 Dec 28, 2022
The project that powers MDN.

Kuma Kuma is the platform that powers MDN (developer.mozilla.org) Development Code: https://github.com/mdn/kuma Issues: P1 Bugs (to be fixed ASAP) P2

MDN Web Docs 1.9k Dec 26, 2022
A comprehensive and FREE Online Python Development tutorial going step-by-step into the world of Python.

FREE Reverse Engineering Self-Study Course HERE Fundamental Python The book and code repo for the FREE Fundamental Python book by Kevin Thomas. FREE B

Kevin Thomas 7 Mar 19, 2022
A clean customizable documentation theme for Sphinx

A clean customizable documentation theme for Sphinx

Pradyun Gedam 1.5k Jan 06, 2023
Portfolio project for Code Institute Full Stack software development course.

Comic Sales tracker This project is the third milestone project for the Code Institute Diploma in Full Stack Software Development. You can see the fin

1 Jan 10, 2022
Material for the ros2 crash course

Material for the ros2 crash course

Emmanuel Dean 1 Jan 22, 2022
Project documentation with Markdown.

MkDocs Project documentation with Markdown. View the MkDocs documentation. Project release notes. Visit the MkDocs wiki for community resources, inclu

MkDocs 15.6k Jan 02, 2023
Data science Python notebooks: Deep learning (TensorFlow, Theano, Caffe, Keras), scikit-learn, Kaggle, big data (Spark, Hadoop MapReduce, HDFS), matplotlib, pandas, NumPy, SciPy, Python essentials, AWS, and various command lines.

Data science Python notebooks: Deep learning (TensorFlow, Theano, Caffe, Keras), scikit-learn, Kaggle, big data (Spark, Hadoop MapReduce, HDFS), matplotlib, pandas, NumPy, SciPy, Python essentials, A

Donne Martin 24.5k Jan 09, 2023
Pystm32ai - A Python wrapper for the stm32ai command-line tool

PySTM32.AI A python wrapper for the stm32ai command-line tool to analyse deep le

Thibaut Vercueil 5 Jul 28, 2022
A curated list of python programming language blogs

Python Blogs A curated list of python programming language blogs Contribute Companies/Organization # A B C D E F G H I J K L M N O P Q R S T U V W X Y

Rizky D. Onto 48 Nov 15, 2022
Plover jyutping - Plover plugin for Jyutping input

Plover plugin for Jyutping Installation Navigate to the repo directory: cd plove

Samuel Lo 1 Mar 17, 2022
Practical Python Programming

Welcome! When I first learned Python nearly 25 years ago, I was immediately struck by how I could productively apply it to all sorts of messy work pro

Dabeaz LLC 8.3k Jan 08, 2023
This is a repository for "100 days of code challenge" projects. You can reach all projects from beginner to professional which are written in Python.

100 Days of Code It's a challenge that aims to gain code practice and enhance programming knowledge. Day #1 Create a Band Name Generator It's actually

SelenNB 2 May 12, 2022
🌱 Complete API wrapper of Seedr.cc

Python API Wrapper of Seedr.cc Table of Contents Installation How I got the API endpoints? Start Guide Getting Token Logging with Username and Passwor

Hemanta Pokharel 43 Dec 26, 2022
Course materials for: Geospatial Data Science

Course materials for: Geospatial Data Science These course materials cover the lectures for the course held for the first time in spring 2022 at IT Un

Michael Szell 266 Jan 02, 2023
The sarge package provides a wrapper for subprocess which provides command pipeline functionality.

Overview The sarge package provides a wrapper for subprocess which provides command pipeline functionality. This package leverages subprocess to provi

Vinay Sajip 14 Dec 18, 2022
Tips for Writing a Research Paper using LaTeX

Tips for Writing a Research Paper using LaTeX

Guanying Chen 727 Dec 26, 2022