FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction

Overview

FLAVR: Flow-Agnostic Video Representations for Fast Frame Interpolation (CVPR 2021)

Eg1 Eg2

[project page] [paper] [Project Video]

FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction. It uses a customized encoder decoder architecture with spatio-temporal convolutions and channel gating to capture and interpolate complex motion trajectories between frames to generate realistic high frame rate videos. This repository contains original source code for the paper accepted to CVPR 2021.

Dependencies

We used the following to train and test the model.

  • Ubuntu 18.04
  • Python==3.7.4
  • numpy==1.19.2
  • PyTorch==1.5.0, torchvision==0.6.0, cudatoolkit==10.1

Model

Training model on Vimeo-90K septuplets

For training your own model on the Vimeo-90K dataset, use the following command. You can download the dataset from this link. The results reported in the paper are trained using 8GPUs.

python main.py --batch_size 32 --test_batch_size 32 --dataset vimeo90K_septuplet --loss 1*L1 --max_epoch 200 --lr 0.0002 --data_root <dataset_path> --n_outputs 1

Training on GoPro dataset is similar, change n_outputs to 7 for 8x interpolation.

Testing using trained model.

Trained Models.

You can download the pretrained FLAVR models from the following links.

Method Trained Model
2x Link
4x Link
8x Link

2x Interpolation

For testing a pretrained model on Vimeo-90K septuplet validation set, you can run the following command:

python test.py --dataset vimeo90K_septuplet --data_root <data_path> --load_from <saved_model> --n_outputs 1

8x Interpolation

For testing a multiframe interpolation model, use the same command as above with multiframe FLAVR model, with n_outputs changed accordingly.

Time Benchmarking

The testing script, in addition to computing PSNR and SSIM values, will also output the inference time and speed for interpolation.

Evaluation on Middleburry

To evaluate on the public benchmark of Middleburry, run the following.

python Middleburry_Test.py --data_root <data_path> --load_from <model_path> 

The interpolated images will be saved to the folder Middleburry in a format that can be readily uploaded to the leaderboard.

SloMo-Filter on custom video

You can use our trained models and apply the slomo filter on your own video (requires OpenCV 4.2.0). Use the following command. If you want to convert a 30FPS video to 240FPS video, simply use the command

python interpolate.py --input_video <input_video> --factor 8 --load_model <model_path>

by using our pretrained model for 8x interpolation. For converting a 30FPS video to 60FPS video, use a 2x model with factor 2.

Baseline Models

We also train models for many other previous works on our setting, and provide models for all these methods. Complete benchmarking scripts will also be released soon.

Method PSNR on Vimeo Trained Model
FLAVR 36.3 Model
AdaCoF 35.3 Model
QVI 35.15 Model
DAIN 34.19 Model
SuperSloMo* 32.90 Model
  • SuperSloMo is implemented using code repository from here. Other baselines are implemented using the official codebases.

Google Colab

Coming soon ... !

Acknowledgement

The code is heavily borrowed from Facebook's official PyTorch video repository and CAIN.

Cite

If this code helps in your work, please consider citing us.

@article{kalluri2021flavr,
  title={FLAVR: Flow-Agnostic Video Representations for Fast Frame Interpolation},
  author={Kalluri, Tarun and Pathak, Deepak and Chandraker, Manmohan and Tran, Du},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2021}
}
Owner
Tarun K
Deep Learning. Mostly Python, PyTorch and Tensorflow.
Tarun K
Seq2seq - Sequence to Sequence Learning with Keras

Seq2seq Sequence to Sequence Learning with Keras Hi! You have just found Seq2Seq. Seq2Seq is a sequence to sequence learning add-on for the python dee

Fariz Rahman 3.1k Dec 18, 2022
Install alphafold on the local machine, get out of docker.

AlphaFold This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP

Kui Xu 73 Dec 13, 2022
Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging"

Deep Optics for Single-shot High-dynamic-range Imaging Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging" CVPR, 2

Stanford Computational Imaging Lab 40 Dec 12, 2022
Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning

structshot Code and data for paper "Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning", Yi Yang and Arz

ASAPP Research 47 Dec 27, 2022
CryptoFrog - My First Strategy for freqtrade

cryptofrog-strategies CryptoFrog - My First Strategy for freqtrade NB: (2021-04-20) You'll need the latest freqtrade develop branch otherwise you migh

Robert Davey 137 Jan 01, 2023
Latent Execution for Neural Program Synthesis

Latent Execution for Neural Program Synthesis This repo provides the code to replicate the experiments in the paper Xinyun Chen, Dawn Song, Yuandong T

Xinyun Chen 16 Oct 02, 2022
🥈78th place in Riiid Answer Correctness Prediction competition

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

Jungwoo Park 10 Jul 14, 2022
A keras implementation of ENet (abandoned for the foreseeable future)

ENet-keras This is an implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from ENet-training (lua-t

Pavlos 115 Nov 23, 2021
NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset

NOD (Night Object Detection) Dataset NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset, BM

Igor Morawski 17 Nov 05, 2022
This project is a loose implementation of paper "Algorithmic Financial Trading with Deep Convolutional Neural Networks: Time Series to Image Conversion Approach"

Stock Market Buy/Sell/Hold prediction Using convolutional Neural Network This repo is an attempt to implement the research paper titled "Algorithmic F

Asutosh Nayak 136 Dec 28, 2022
RLBot Python bindings for the Rust crate rl_ball_sym

RLBot Python bindings for rl_ball_sym 0.6 Prerequisites: Rust & Cargo Build Tools for Visual Studio RLBot - Verify that the file %localappdata%\RLBotG

Eric Veilleux 2 Nov 25, 2022
This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems

Stability Audit This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems, Humantic

Data, Responsibly 4 Oct 27, 2022
Awesome Weak-Shot Learning

Awesome Weak-Shot Learning In weak-shot learning, all categories are split into non-overlapped base categories and novel categories, in which base cat

BCMI 162 Dec 30, 2022
New AidForBlind - Various Libraries used like OpenCV and other mentioned in Requirements.txt

AidForBlind Recommended PyCharm IDE Various Libraries used like OpenCV and other

Aalhad Chandewar 1 Jan 13, 2022
Combining Diverse Feature Priors

Combining Diverse Feature Priors This repository contains code for reproducing the results of our paper. Paper: https://arxiv.org/abs/2110.08220 Blog

Madry Lab 5 Nov 12, 2022
Deep Sketch-guided Cartoon Video Inbetweening

Cartoon Video Inbetweening Paper | DOI | Video The source code of Deep Sketch-guided Cartoon Video Inbetweening by Xiaoyu Li, Bo Zhang, Jing Liao, Ped

Xiaoyu Li 37 Dec 22, 2022
DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing

DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing Figure: Joint multi-attribute edits using DyStyle model. Great diversity

74 Dec 03, 2022
Toward Multimodal Image-to-Image Translation

BicycleGAN Project Page | Paper | Video Pytorch implementation for multimodal image-to-image translation. For example, given the same night image, our

Jun-Yan Zhu 1.4k Dec 22, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 08, 2023
Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks

Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks Abstract Facial expression recognition in video

Bogireddy Sai Prasanna Teja Reddy 103 Dec 29, 2022