A dual benchmarking study of visual forgery and visual forensics techniques

Overview

A dual benchmarking study of facial forgery and facial forensics

In recent years, visual forgery has reached a level of sophistication that humans cannot identify fraud, which poses a significant threat to information security. A wide range of malicious applications have emerged, such as fake news, defamation or blackmailing of celebrities, impersonation of politicians in political warfare, and the spreading of rumours to attract views. As a result, a rich body of visual forensic techniques has been proposed in an attempt to stop this dangerous trend. In this paper, we present a benchmark that provides in-depth insights into visual forgery and visual forensics, using a comprehensive and empirical approach. More specifically, we develop an independent framework that integrates state-of-the-arts counterfeit generators and detectors, and measure the performance of these techniques using various criteria. We also perform an exhaustive analysis of the benchmarking results, to determine the characteristics of the methods that serve as a comparative reference in this never-ending war between measures and countermeasures.

Framework

When developing our dual benchmarking analysis of visual forgery and visual forensic techniques, we aimed to provide an extensible framework. To achieve this goal, we used a component-based design to integrate the techniques in a straightforward manner while maintaining their original performance. The below figure depicts the simplified architecture of the framework. The framework contains three layers. The first is a data access layer, which organises the underlying data objects, including the genuine and forged content generated by the visual forgery techniques. The second is a computing layer, which contains four modules: the visual forgery, visual forensics, modulation and evaluation modules. The visual forgery and visual forensics modules include the generation algorithms and forgery detection techniques, respectively. Both of these modules allow the user to easily integrate new algorithms for benchmarking. The modulation module uses a specified configuration to augment the content in order to validate different adverse conditions such as brightness and contrast. The evaluation module assesses the prediction results from the visual forensics module based on various metrics, and delivers statistics and findings to the application layer. Finally, users interact with the framework via the application layer to configure parameters and receive output visualisations.

Dual benchmarking framework.

Enviroment

pip install -r requirement.txt

Preprocess data

Extract fame from video and detect face in frame to save *.jpg image.

python extrac_face.py --inp in/ --output out/ --worker 1 --duration 4

--inp : folder contain video

--output : folder output .jpg image

--worker : number thread extract

--duration : number of frame skip each extract time

Train

Preprocess for GAN-fingerprint

python data_preparation_gan.py in_dir /hdd/tam/df_in_the_wild/image/train --out_dir /hdd/tam/df_in_the_wild/gan/train resolution 128

Preprocess for visual model

python -m feature_model.visual_artifact.process_data --input_real /hdd/tam/df_in_the_wild/image/train/0_real --input_fake /hdd/tam/df_in_the_wild/image/train/1_df --output /hdd/tam/df_in_the_wild/train_visual.pkl --number_iter 1000

Preprocess for headpose model

python -m feature_model.headpose_forensic.process_data --input_real /hdd/tam/df_in_the_wild/image/train/0_real --input_fake /hdd/tam/df_in_the_wild/image/train/1_df --output /hdd/tam/df_in_the_wild/train_visual.pkl --number_iter 1000

Preprocess for spectrum

python -m feature_model.spectrum.process_data --input_real /hdd/tam/df_in_the_wild/image/train/0_real --input_fake /hdd/tam/df_in_the_wild/image/train/1_df --output /hdd/tam/df_in_the_wild/train_spectrum.pkl --number_iter 1000

Train

Train for cnn

python train.py --train_set data/Celeb-DF/image/train/ --val_set data/Celeb-DF/image/test/ --batch_size 32 --image_size 128 --workers 16 --checkpoint xception_128_df_inthewild_checkpoint/ --gpu_id 0 --resume model_pytorch_1.pt --print_every 10000000 xception_torch

Train for feature model

python train.py --train_set /hdd/tam/df_in_the_wild/train_visual.pkl --checkpoint spectrum_128_df_inthewild_checkpoint/ --gpu_id 0 --resume model_pytorch_1.pt spectrum

Eval

Eval for cnn

python eval.py --val_set /hdd/tam/df_in_the_wild/image/test/ --adj_brightness 1.0 --adj_contrast 1.0 --batch_size 32 --image_size 128 --workers 16 --checkpoint efficientdual_128_df_inthewild_checkpoint/ --resume model_dualpytorch3_1.pt efficientdual

python eval.py --val_set /hdd/tam/df_in_the_wild/image/test/ --adj_brightness 1.0 --adj_contrast 1.5 --batch_size 32 --image_size 128 --workers 16 --checkpoint capsule_128_df_inthewild_checkpoint/ --resume 4 capsule

``

Eval for feature model

python eval.py --val_set ../DeepFakeDetection/Experiments_DeepFakeDetection/test_dfinthewild.pkl --checkpoint ../DeepFakeDetection/Experiments_DeepFakeDetection/model_df_inthewild.pkl --resume model_df_inthewild.pkl spectrum

Detect

python detect_img.py --img_path /hdd/tam/extend_data/image/test/1_df/reference_0_113.jpg --model_path efficientdual_mydata_checkpoint/model_dualpytorch3_1.pt --gpu_id 0 efficientdual

python detect_img.py --img_path /hdd/tam/extend_data/image/test/1_df/reference_0_113.jpg --model_path xception_mydata_checkpoint/model_pytorch_0.pt --gpu_id 0 xception_torch

python detect_img.py --img_path /hdd/tam/extend_data/image/test/1_df/reference_0_113.jpg --model_path capsule_mydata_checkpoint/capsule_1.pt --gpu_id 0 capsule

References

[1] https://github.com/nii-yamagishilab/Capsule-Forensics-v2

[2] Nguyen, H. H., Yamagishi, J., & Echizen, I. (2019). Capsule-forensics: Using Capsule Networks to Detect Forged Images and Videos. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2019-May, 2307–2311.

[3] https://github.com/PeterWang512/FALdetector

[4] Wang, S.-Y., Wang, O., Owens, A., Zhang, R., & Efros, A. A. (2019). Detecting Photoshopped Faces by Scripting Photoshop.

[5] Rössler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., & Nießner, M. (2019). FaceForensics++: Learning to Detect Manipulated Facial Images.

[6] Hsu, C.-C., Zhuang, Y.-X., & Lee, C.-Y. (2020). Deep Fake Image Detection Based on Pairwise Learning. Applied Sciences, 10(1), 370.

[7] Afchar, D., Nozick, V., Yamagishi, J., & Echizen, I. (2019). MesoNet: A compact facial video forgery detection network. 10th IEEE International Workshop on Information Forensics and Security, WIFS 2018.

[8] https://github.com/DariusAf/MesoNet

[9] Li, Y., Yang, X., Sun, P., Qi, H., & Lyu, S. (2019). Celeb-DF: A New Dataset for DeepFake Forensics.

[10] https://github.com/deepfakeinthewild/deepfake_in_the_wild

[11] https://www.idiap.ch/dataset/deepfaketimit

[12] Y. Li, X. Yang, P. Sun, H. Qi, and S. Lyu, “Celeb-DF (v2): A new dataset for deepfake forensics,” arXiv preprint arXiv:1909.12962v3, 2018.

[13] Neves, J. C., Tolosana, R., Vera-Rodriguez, R., Lopes, V., & Proença, H. (2019). Real or Fake? Spoofing State-Of-The-Art Face Synthesis Detection Systems. 13(9), 1–8.

[14] https://github.com/danmohaha/DSP-FWA

Owner
Ph.D. in Computer Science and Data Science
Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments

Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments Paper: arXiv (ICRA 2021) Video : https://youtu.be/CC

Sachini Herath 68 Jan 03, 2023
cisip-FIRe - Fast Image Retrieval

Fast Image Retrieval (FIRe) is an open source image retrieval project release by Center of Image and Signal Processing Lab (CISiP Lab), Universiti Malaya. This project implements most of the major bi

CISiP Lab 39 Nov 25, 2022
Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in Pytorch

Retrieval-Augmented Denoising Diffusion Probabilistic Models (wip) Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in P

Phil Wang 55 Jan 01, 2023
[EMNLP 2020] Keep CALM and Explore: Language Models for Action Generation in Text-based Games

Contextual Action Language Model (CALM) and the ClubFloyd Dataset Code and data for paper Keep CALM and Explore: Language Models for Action Generation

Princeton Natural Language Processing 43 Dec 16, 2022
Pytorch implementation for DFN: Distributed Feedback Network for Single-Image Deraining.

DFN:Distributed Feedback Network for Single-Image Deraining Abstract Recently, deep convolutional neural networks have achieved great success for sing

6 Nov 05, 2022
Tom-the-AI - A compound artificial intelligence software for Linux systems.

Tom the AI (version 0.82) WARNING: This software is not yet ready to use, I'm still setting up the GitHub repository. Should be ready in a few days. T

2 Apr 28, 2022
A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

Sense-GVT 14 Jul 07, 2022
A PyTorch implementation of the Transformer model in "Attention is All You Need".

Attention is all you need: A Pytorch Implementation This is a PyTorch implementation of the Transformer model in "Attention is All You Need" (Ashish V

Yu-Hsiang Huang 7.1k Jan 04, 2023
E2e music remastering system - End-to-end Music Remastering System Using Self-supervised and Adversarial Training

End-to-end Music Remastering System This repository includes source code and pre

Junghyun (Tony) Koo 37 Dec 15, 2022
MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021)

MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021) A pytorch implementation of MicroNet. If you use this code in your research

Yunsheng Li 293 Dec 28, 2022
Recreate CenternetV2 based on MMDET.

Introduction This project is trying to Recreate CenternetV2 based on MMDET, which is proposed in paper Probabilistic two-stage detection. This project

25 Dec 09, 2022
Code for Towards Streaming Perception (ECCV 2020) :car:

sAP — Code for Towards Streaming Perception ECCV Best Paper Honorable Mention Award Feb 2021: Announcing the Streaming Perception Challenge (CVPR 2021

Martin Li 85 Dec 22, 2022
Demo code for ICCV 2021 paper "Sensor-Guided Optical Flow"

Sensor-Guided Optical Flow Demo code for "Sensor-Guided Optical Flow", ICCV 2021 This code is provided to replicate results with flow hints obtained f

10 Mar 16, 2022
A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities

MPT A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities. Implementation for our AAAI 2022 paper: Multi-

yidiLi 4 May 08, 2022
Pytorch implementation of RED-SDS (NeurIPS 2021).

Recurrent Explicit Duration Switching Dynamical Systems (RED-SDS) This repository contains a reference implementation of RED-SDS, a non-linear state s

Abdul Fatir 10 Dec 02, 2022
Stitch it in Time: GAN-Based Facial Editing of Real Videos

STIT - Stitch it in Time [Project Page] Stitch it in Time: GAN-Based Facial Edit

1.1k Jan 04, 2023
NAACL2021 - COIL Contextualized Lexical Retriever

COIL Repo for our NAACL paper, COIL: Revisit Exact Lexical Match in Information Retrieval with Contextualized Inverted List. The code covers learning

Luyu Gao 108 Dec 31, 2022
Model Quantization Benchmark

Introduction MQBench is an open-source model quantization toolkit based on PyTorch fx. The envision of MQBench is to provide: SOTA Algorithms. With MQ

500 Jan 06, 2023
Image Super-Resolution by Neural Texture Transfer

SRNTT: Image Super-Resolution by Neural Texture Transfer Tensorflow implementation of the paper Image Super-Resolution by Neural Texture Transfer acce

Zhifei Zhang 413 Nov 30, 2022
Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation

Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation This is the implementation of the approach describ

Taosha Fan 47 Nov 15, 2022