Code repository for the paper "Doubly-Trained Adversarial Data Augmentation for Neural Machine Translation" with instructions to reproduce the results.

Overview

Doubly Trained Neural Machine Translation System for Adversarial Attack and Data Augmentation

Languages Experimented:

  • Data Overview:

    Source Target Training Data Valid1 Valid2 Test data
    ZH EN WMT17 without UN corpus WMT2017 newstest WMT2018 newstest WMT2020 newstest
    DE EN WMT17 WMT2017 newstest WMT2018 newstest WMT2014 newstest
    FR EN WMT14 without UN corpus WMT2015 newsdiscussdev WMT2015 newsdiscusstest WMT2014 newstest
  • Corpus Statistics:

    Lang-pair Data Type #Sentences #tokens (English side)
    zh-en Train 9355978 161393634
    Valid1 2001 47636
    Valid2 3981 98308
    test 2000 65561
    de-en Train 4001246 113777884
    Valid1 2941 74288
    Valid2 2970 78358
    test 3003 78182
    fr-en Train 23899064 73523616
    Valid1 1442 30888
    Valid2 1435 30215
    test 3003 81967

Scripts (as shown in paper's appendix)

  • Set-up:

    • To execute the scripts shown below, it's required that fairseq version 0.9 is installed along with COMET. The way to easily install them after cloning this repo is executing following commands (under root of this repo):
      cd fairseq-0.9.0
      pip install --editable ./
      cd ../COMET
      pip install .
    • It's also possible to directly install COMET through pip: pip install unbabel-comet, but the recent version might have different dependency on other packages like fairseq. Please check COMET's official website for the updated information.
    • To make use of script that relies on COMET model (in case of dual-comet), a model from COMET should be downloaded. It can be easily done by running following script:
      from comet.models import download_model
      download_model("wmt-large-da-estimator-1719")
  • Pretrain the model:

    fairseq-train $DATADIR \
        --source-lang $src \
        --target-lang $tgt \
        --save-dir $SAVEDIR \
        --share-decoder-input-output-embed \
        --arch transformer_wmt_en_de \
        --optimizer adam --adam-betas ’(0.9, 0.98)’ --clip-norm 0.0 \
        --lr-scheduler inverse_sqrt \
        --warmup-init-lr 1e-07 --warmup-updates 4000 \
        --lr 0.0005 --min-lr 1e-09 \
        --dropout 0.3 --weight-decay 0.0001 \
        --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
        --max-tokens 2048 --update-freq 16 \
        --seed 2 
  • Adversarial Attack:

    fairseq-train $DATADIR \
        --source-lang $src \
        --target-lang $tgt \
        --save-dir $SAVEDIR \
        --share-decoder-input-output-embed \
        --train-subset valid \
        --arch transformer_wmt_en_de \
        --optimizer adam --adam-betas ’(0.9, 0.98)’ --clip-norm 0.0 \
        --lr-scheduler inverse_sqrt \
        --warmup-init-lr 1e-07 --warmup-updates 4000 \
        --lr 0.0005 --min-lr 1e-09 \
        --dropout 0.3 --weight-decay 0.0001 \
        --criterion dual_bleu --mrt-k 16 \
        --batch-size 2 --update-freq 64 \
        --seed 2 \
        --restore-file $PREETRAIN_MODEL \
        --reset-optimizer \
        --reset-dataloader 
  • Data Augmentation:

    fairseq-train $DATADIR \
        -s $src -t $tgt \
        --train-subset valid \
        --valid-subset valid1 \
        --left-pad-source False \
        --share-decoder-input-output-embed \
        --encoder-embed-dim 512 \
        --arch transformer_wmt_en_de \
        --dual-training \
        --auxillary-model-path $AUX_MODEL \
        --auxillary-model-save-dir $AUX_MODEL_SAVE \
        --optimizer adam --adam-betas ’(0.9, 0.98)’ --clip-norm 0.0 \
        --lr-scheduler inverse_sqrt \
        --warmup-init-lr 0.000001 --warmup-updates 1000 \
        --lr 0.00001 --min-lr 1e-09 \
        --dropout 0.3 --weight-decay 0.0001 \
        --criterion dual_comet/dual_mrt --mrt-k 8 \
        --comet-route $COMET_PATH \
        --batch-size 4 \
        --skip-invalid-size-inputs-valid-test \
        --update-freq 1 \
        --on-the-fly-train --adv-percent 30 \
        --seed 2 \
        --restore-file $PRETRAIN_MODEL \
        --reset-optimizer \
        --reset-dataloader \
        --save-dir $CHECKPOINT_FOLDER 

Generation and Test:

  • For Chinese-English, we use sentencepiece to perform the BPE so it's required to be removed in generation step. For all test we use beam size = 5. Noitce that we modified the code in fairseq-gen to use sacrebleu.tokenizers.TokenizerZh() to tokenize Chinese when the direction is en-zh.

    fairseq-generate $DATA-FOLDER \
        -s zh -t en \
        --task translation \
        --gen-subset $file \
        --path $CHECKPOINT \
        --batch-size 64 --quiet \
        --lenpen 1.0 \
        --remove-bpe sentencepiece \
        --sacrebleu \
        --beam 5
  • For French-Enlish, German-English, we modified the script to detokenize the moses tokenizer (which we used to preprocess the data). To reproduce the result, use following script:

    fairseq-generate $DATA-FOLDER \
        -s de/fr -t en \
        --task translation \
        --gen-subset $file \
        --path $CHECKPOINT \
        --batch-size 64 --quiet \
        --lenpen 1.0 \
        --remove-bpe \
        ---detokenize-moses \
        --sacrebleu \
        --beam 5

    Here --detokenize-moses would call detokenizer during the generation step and detokenize predictions before evaluating it. It would slow the generation step. Another way to manually do this is to retrieve prediction and target sentences from output file of fairseq and manually apply detokenizer from detokenizer.perl.

BibTex

@misc{tan2021doublytrained,
      title={Doubly-Trained Adversarial Data Augmentation for Neural Machine Translation}, 
      author={Weiting Tan and Shuoyang Ding and Huda Khayrallah and Philipp Koehn},
      year={2021},
      eprint={2110.05691},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Owner
Steven Tan
Johns Hopkins 21' Computer Science & Applied Mathematics and Statistics Major
Steven Tan
You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks.

AllSet This is the repo for our paper: You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks. We prepared all codes and a subse

Jianhao 51 Dec 24, 2022
A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks

pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks A Transformer-based library for SocialNLP classification tasks. Currently

298 Jan 07, 2023
Spatial Sparse Convolution Library

SpConv: Spatially Sparse Convolution Library PyPI Install Downloads CPU (Linux Only) pip install spconv CUDA 10.2 pip install spconv-cu102 CUDA 11.1 p

Yan Yan 1.2k Jan 07, 2023
An implementation for `Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction`

Text2Event An implementation for Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction Please contact Yaojie Lu (@

Roger 153 Jan 07, 2023
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022
The code of paper 'Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection'

Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection Pytorch implemetation of paper 'Learning to Aggregate and Personalize

Tencent YouTu Research 136 Dec 29, 2022
Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(n²) Memory"

Memory Efficient Attention Pytorch Implementation of a memory efficient multi-head attention as proposed in the paper, Self-attention Does Not Need O(

Phil Wang 180 Jan 05, 2023
Source Code for ICSE 2022 Paper - ``Can We Achieve Fairness Using Semi-Supervised Learning?''

Fair-SSL Source Code for ICSE 2022 Paper - Can We Achieve Fairness Using Semi-Supervised Learning? Ethical bias in machine learning models has become

1 Dec 18, 2021
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Jan 06, 2023
PyTorch implementation of the REMIND method from our ECCV-2020 paper "REMIND Your Neural Network to Prevent Catastrophic Forgetting"

REMIND Your Neural Network to Prevent Catastrophic Forgetting This is a PyTorch implementation of the REMIND algorithm from our ECCV-2020 paper. An ar

Tyler Hayes 72 Nov 27, 2022
Official implementation of "MetaSDF: Meta-learning Signed Distance Functions"

MetaSDF: Meta-learning Signed Distance Functions Project Page | Paper | Data Vincent Sitzmann*, Eric Ryan Chan*, Richard Tucker, Noah Snavely Gordon W

Vincent Sitzmann 100 Jan 01, 2023
ADOP: Approximate Differentiable One-Pixel Point Rendering

ADOP: Approximate Differentiable One-Pixel Point Rendering Abstract: We present a novel point-based, differentiable neural rendering pipeline for scen

Darius Rückert 1.9k Jan 06, 2023
Text and code for the forthcoming second edition of Think Bayes, by Allen Downey.

Think Bayes 2 by Allen B. Downey The HTML version of this book is here. Think Bayes is an introduction to Bayesian statistics using computational meth

Allen Downey 1.5k Jan 08, 2023
[NIPS 2021] UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration.

UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration This repository is the official PyTorch implementation of UOT

6 Jun 29, 2022
MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens

MSG-Transformer Official implementation of the paper MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens, by Jiemin

Hust Visual Learning Team 68 Nov 16, 2022
Tidy interface to polars

tidypolars tidypolars is a data frame library built on top of the blazingly fast polars library that gives access to methods and functions familiar to

Mark Fairbanks 144 Jan 08, 2023
Official Implementation of DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation

DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation [Arxiv] [Paper] As acquiring pixel-wise an

Lukas Hoyer 305 Dec 29, 2022
Code for Max-Margin Contrastive Learning - AAAI 2022

Max-Margin Contrastive Learning This is a pytorch implementation for the paper Max-Margin Contrastive Learning accepted to AAAI 2022. This repository

Anshul Shah 12 Oct 22, 2022
This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in Eurographics 2021

Deep-Detail-Enhancement-for-Any-Garment Introduction This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in

40 Dec 13, 2022
🕵 Artificial Intelligence for social control of public administration

Non-tech crash course into Operação Serenata de Amor Tech crash course into Operação Serenata de Amor Contributing with code and tech skills Supportin

Open Knowledge Brasil - Rede pelo Conhecimento Livre 4.4k Dec 31, 2022