Pytorch implementation of NEGEV method. Paper: "Negative Evidence Matters in Interpretable Histology Image Classification".

Overview

Pytorch 1.10.0 code for:

Negative Evidence Matters in Interpretable Histology Image Classification (https://arxiv. org/abs/xxxx.xxxxx)

Citation:

@article{negevsbelharbi2021,
  title={Negative Evidence Matters  in Interpretable Histology Image Classification},
  author={Belharbi, S. and  Pedersoli, M and
  Ben Ayed, I. and McCaffrey, L. and Granger, E.},
  journal={CoRR},
  volume={abs/xxxx.xxxxx},
  year={2021}
}

Issues:

Please create a github issue.

Content:

Method:

method

Results:

glas-results

camelyon16-results

Requirements:

pip install torch==1.10.0 -f https://download.pytorch.org/whl/cu111/torch-1.10.0%2Bcu111-cp37-cp37m-linux_x86_64.whl
pip install torchvision==0.11.1 -f https://download.pytorch.org/whl/cu111/torchvision-0.11.1%2Bcu111-cp37-cp37m-linux_x86_64.whl
  • Full dependencies
  • Build and install CRF:
    • Install Swig
    • CRF (not used in this work, but it is part of the code.)
cdir=$(pwd)
cd dlib/crf/crfwrapper/bilateralfilter
swig -python -c++ bilateralfilter.i
python setup.py install
cd $cdir
cd dlib/crf/crfwrapper/colorbilateralfilter
swig -python -c++ colorbilateralfilter.i
python setup.py install

Download datasets :

2.1. Links to dataset:

2.2. Download datasets:

You find the splits in ./folds.

Run code :

  • CAM-method: CAM over GLAS using ResNet50:
cudaid=$1
export CUDA_VISIBLE_DEVICES=$cudaid
getfreeport() {
freeport=$(python -c 'import socket; s=socket.socket(); s.bind(("", 0)); print(s.getsockname()[1]); s.close()')
}
export OMP_NUM_THREADS=50
export NCCL_BLOCKING_WAIT=1
plaunch=$(python -c "from os import path; import torch; print(path.join(path.dirname(torch.__file__), 'distributed', 'launch.py'))")
getfreeport
torchrun --nnodes=1 --node_rank=0 --nproc_per_node=1  \
                         --master_port=$freeport main_wsol.py \ --local_world_size=1 \
                         --task STD_CL \
                         --encoder_name resnet50 \
                         --arch STDClassifier \
                         --runmode final-mode \
                         --opt__name_optimizer sgd \
                         --batch_size 32 \
                         --eval_checkpoint_type best_localization \
                         --opt__step_size 250 \
                         --opt__gamma 0.1 \
                         --max_epochs 1000 \
                         --freeze_cl False \
                         --support_background True \
                         --method CAM \
                         --spatial_pooling WGAP \
                         --dataset GLAS \
                         --fold 0 \
                         --cudaid 0 \
                         --debug_subfolder None \
                         --amp True \
                         --opt__lr 0.003 \
                         --exp_id 11_19_2021_09_32_36_109051__423849
  • NEGEV-method: over GLAS using ResNet50:
cudaid=$1
export CUDA_VISIBLE_DEVICES=$cudaid
getfreeport() {
freeport=$(python -c 'import socket; s=socket.socket(); s.bind(("", 0)); print(s.getsockname()[1]); s.close()')
}
export OMP_NUM_THREADS=50
export NCCL_BLOCKING_WAIT=1
plaunch=$(python -c "from os import path; import torch; print(path.join(path.dirname(torch.__file__), 'distributed', 'launch.py'))")
getfreeport
torchrun --nnodes=1 --node_rank=0 --nproc_per_node=1 \
                         --master_port=$freeport main_wsol.py \ --local_world_size=1 \
                         --task NEGEV \
                         --world_size 1 \
                         --task NEGEV \
                         --encoder_name resnet50 \
                         --arch UnetNEGEV \
                         --runmode final-mode \
                         --opt__name_optimizer sgd \
                         --dist_backend mpi \
                         --batch_size 32 \
                         --eval_checkpoint_type best_localization \
                         --opt__step_size 250 \
                         --opt__gamma 0.1 \
                         --max_epochs 1000 \
                         --freeze_cl True \
                         --support_background True \
                         --method CAM \
                         --spatial_pooling WGAP \
                         --dataset GLAS \
                         --fold 0 \
                         --cudaid 0 \
                         --debug_subfolder None \
                         --amp True \
                         --opt__lr 0.1 \
                         --negev_ptretrained_cl_cp best_localization \
                         --elb_init_t 1.0 \
                         --elb_max_t 10.0 \
                         --elb_mulcoef 1.01 \
                         --sl_ng True \
                         --sl_ng_seeder probability_seeder \
                         --sl_ng_lambda 1.0 \
                         --sl_ng_start_ep 0 \
                         --sl_ng_end_ep -1 \
                         --sl_ng_min 1 \
                         --sl_ng_max 1 \
                         --sl_ng_ksz 3 \
                         --crf_ng False \
                         --jcrf_ng False \
                         --neg_samples_ng False \
                         --max_sizepos_ng False \
                         --exp_id 12_13_2021_00_49_48_796469__3314599
  • Train the CAM-method first. Then, copy the best model from the exp folder into the folder ./pretrained. Copy the whole folder with this name format GLAS-0-resnet50-CAM-WGAP-cp_best_localization.
Owner
Soufiane Belharbi
Post-doc at LIVIA Lab. ÉTS Montreal, in collab. with McCaffrey Lab. /GCRC McGill. Training neural networks with weak supervision.
Soufiane Belharbi
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
PSPNet in Chainer

PSPNet This is an unofficial implementation of Pyramid Scene Parsing Network (PSPNet) in Chainer. Training Requirement Python 3.4.4+ Chainer 3.0.0b1+

Shunta Saito 76 Dec 12, 2022
Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools

Deep-rPPG: Camera-based pulse estimation using deep learning tools Deep learning (neural network) based remote photoplethysmography: how to extract pu

Terbe Dániel 138 Dec 17, 2022
Tensorflow AffordanceNet and AffContext implementations

AffordanceNet and AffContext This is tensorflow AffordanceNet and AffContext implementations. Both are implemented and tested with tensorflow 2.3. The

Beatriz Pérez 6 Dec 01, 2022
Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21

Skeletal-GNN Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21 Various deep learning techniques have been propose

37 Oct 23, 2022
A PyTorch implementation for V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation

A PyTorch implementation of V-Net Vnet is a PyTorch implementation of the paper V-Net: Fully Convolutional Neural Networks for Volumetric Medical Imag

Matthew Macy 606 Dec 21, 2022
Source code for paper "Deep Diffusion Models for Robust Channel Estimation", TBA.

diffusion-channels Source code for paper "Deep Diffusion Models for Robust Channel Estimation". Generic flow: Use 'matlab/main.mat' to generate traini

The University of Texas Computational Sensing and Imaging Lab 15 Dec 22, 2022
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Dec 27, 2022
PSANet: Point-wise Spatial Attention Network for Scene Parsing, ECCV2018.

PSANet: Point-wise Spatial Attention Network for Scene Parsing (in construction) by Hengshuang Zhao*, Yi Zhang*, Shu Liu, Jianping Shi, Chen Change Lo

Hengshuang Zhao 217 Oct 30, 2022
Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

235 Dec 26, 2022
A light-weight image labelling tool for Python designed for creating segmentation data sets.

An image labelling tool for creating segmentation data sets, for Django and Flask.

117 Nov 21, 2022
Semantic Segmentation Architectures Implemented in PyTorch

pytorch-semseg Semantic Segmentation Algorithms Implemented in PyTorch This repository aims at mirroring popular semantic segmentation architectures i

Meet Shah 3.3k Dec 29, 2022
Implementation of light baking system for ray tracing based on Activision's UberBake

Vulkan Light Bakary MSU Graphics Group Student's Diploma Project Treefonov Andrey [GitHub] [LinkedIn] Project Goal The goal of the project is to imple

Andrey Treefonov 7 Dec 27, 2022
Codes for AAAI22 paper "Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum"

Paper For more details, please see our paper Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum which has been accepted a

14 Sep 30, 2022
3D-aware GANs based on NeRF (arXiv).

CIPS-3D This repository will contain the code of the paper, CIPS-3D: A 3D-Aware Generator of GANs Based on Conditionally-Independent Pixel Synthesis.

Peterou 563 Dec 31, 2022
Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite.

tflite2tensorflow Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite. 1. Supported Layers No. TFLite Layer TF

Katsuya Hyodo 214 Dec 29, 2022
TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors

TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors This package provides a simulator for vision-based

Facebook Research 255 Dec 27, 2022
Le dataset des images du projet d'IA de 2021

face-mask-dataset-ilc-2021 Le dataset des images du projet d'IA de 2021, Indiquez vos id git dans la issue pour les droits TL;DR: Choisir 200 images J

7 Nov 15, 2021
ScriptProfilerPy - Module to visualize where your python script is slow

ScriptProfiler helps you track where your code is slow It provides: Code lines t

Lucas BLP 3 Jun 02, 2022
Implementation of ECCV20 paper: the devil is in classification: a simple framework for long-tail object detection and instance segmentation

Implementation of our ECCV 2020 paper The Devil is in Classification: A Simple Framework for Long-tail Instance Segmentation This repo contains code o

twang 98 Sep 17, 2022