How to detect objects in real time by using Jupyter Notebook and Neural Networks , by using Yolo3

Overview

Real Time Object Recognition From your Screen Desktop .

In this post, I will explain how to build a simply program to detect objects from you desktop computer.

We will see how using OpenCV and Python, we can detect objects by applying the most popular YOLO(You Look Only Once) algorithm.

OpenCV is the computer vision library/ framework that we we will be using to support our YOLOv3 algorithm

Darknet Architecture is pre-trained model for classifying 80 different classes. Our goal now is that we will use Darknet(YOLOv3) in OpenCV to classify objects using Python language.

For this project we will consider an standard resolution 1920 x 1080 , in windows 10 in Display Setting , select the resolution 1920 x 1080

Then you need to install Anaconda at this link

img

After you install it , check that your terminal , recognize conda

C:\conda --version
conda 4.10.3

The environments supported that I will consider is Python 3.7, Keras 2.4.3 and TensorFlow 2.4.0, let us create the environment, go to you command promt terminal and type the following:

conda create -n detector python==3.7.10
conda activate detector

then in your terminal type the following commands:

conda install ipykernel
Proceed ([y]/n)? y
python -m ipykernel install --user --name detector --display-name "Python (Object Detector)"

Then we install the correct versions of the the Tensorflow, and Numpy and Keras

we create a file called requirements.txt

if your are in Windows

notepad requirements.txt

or Linux

nano  requirements.txt

and you paste the following lines

Keras==2.4.3
keras-resnet==0.2.0
numpy==1.19.3
opencv-python==3.4.2.17
tensorflow==2.4.0
tensorflow-estimator==2.4.0
tensorflow-gpu==2.4.0
Pillow==9.0.0

and then we return back to the terminal and install them

pip install -r requirements.txt

then open the Jupyter notebook with the command

jupyter notebook&

then you click create new notebook Python (Object Detector) and then you can test if you can import the the following libraries

import numpy as np
from PIL import ImageGrab
import cv2
import time
import win32gui, win32ui, win32con, win32api

The next step is is define a function that enable record you screen

def grab_screen(region=None):
    hwin = win32gui.GetDesktopWindow()
    if region:
            left,top,x2,y2 = region
            width = x2 - left + 1
            height = y2 - top + 1
    else:
        width = win32api.GetSystemMetrics(win32con.SM_CXVIRTUALSCREEN)
        height = win32api.GetSystemMetrics(win32con.SM_CYVIRTUALSCREEN)
        left = win32api.GetSystemMetrics(win32con.SM_XVIRTUALSCREEN)
        top = win32api.GetSystemMetrics(win32con.SM_YVIRTUALSCREEN)
    hwindc = win32gui.GetWindowDC(hwin)
    srcdc = win32ui.CreateDCFromHandle(hwindc)
    memdc = srcdc.CreateCompatibleDC()
    bmp = win32ui.CreateBitmap()
    bmp.CreateCompatibleBitmap(srcdc, width, height)
    memdc.SelectObject(bmp)
    memdc.BitBlt((0, 0), (width, height), srcdc, (left, top), win32con.SRCCOPY)
    signedIntsArray = bmp.GetBitmapBits(True)
    img = np.fromstring(signedIntsArray, dtype='uint8')
    img.shape = (height,width,4)
    srcdc.DeleteDC()
    memdc.DeleteDC()
    win32gui.ReleaseDC(hwin, hwindc)
    win32gui.DeleteObject(bmp.GetHandle())
    return cv2.cvtColor(img, cv2.COLOR_BGRA2RGB)

then you define a new function called main() which will record your screen

def main():
    last_time = time.time()
    while True:
        # 1920 windowed mode
        screen = grab_screen(region=(0,40,1920,1120))
        img = cv2.resize(screen,None,fx=0.4,fy=0.3)
        height,width,channels = img.shape
        #detecting objects
        blob = cv2.dnn.blobFromImage(img,0.00392,(416,416),(0,0,0),True,crop=False)
        net.setInput(blob)
        outs = net.forward(outputlayers)
        #Showing info on screen/ get confidence score of algorithm in detecting an object in blob
        class_ids=[]
        confidences=[]
        boxes=[]
        for out in outs:
            for detection in out:
                scores = detection[5:]
                class_id = np.argmax(scores)
                confidence = scores[class_id]
                if confidence > 0.5:
                    #onject detected
                    center_x= int(detection[0]*width)
                    center_y= int(detection[1]*height)
                    w = int(detection[2]*width)
                    h = int(detection[3]*height)
                    #rectangle co-ordinaters
                    x=int(center_x - w/2)
                    y=int(center_y - h/2)
                    boxes.append([x,y,w,h]) #put all rectangle areas
                    confidences.append(float(confidence)) #how confidence was that object detected and show that percentage
                    class_ids.append(class_id) #name of the object tha was detected
        indexes = cv2.dnn.NMSBoxes(boxes,confidences,0.4,0.6)
        font = cv2.FONT_HERSHEY_PLAIN
        for i in range(len(boxes)):
            if i in indexes:
                x,y,w,h = boxes[i]
                label = str(classes[class_ids[i]])
                color = colors[i]
                cv2.rectangle(img,(x,y),(x+w,y+h),color,2)
                cv2.putText(img,label,(x,y+30),font,1,(255,255,255),2)
        #print('Frame took {} seconds'.format(time.time()-last_time))
        last_time = time.time()
        cv2.imshow('window', img)
        if cv2.waitKey(25) & 0xFF == ord('q'):
            cv2.destroyAllWindows()
            break

and finally we download the following files

  1. yolo.cfg (Download from here) — Configuration file
  2. yolo.weights (Download from here) — pre-trained weights
  3. coco.names (Download from here)- 80 classes names

then you add the following code

net = cv2.dnn.readNetFromDarknet('yolov3.cfg', 'yolov3.weights')
classes = []
with open("coco.names","r") as f:
    classes = [line.strip() for line in f.readlines()]
    
layer_names = net.getLayerNames()
outputlayers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
colors= np.random.uniform(0,255,size=(len(classes),3))

and finally you just run it with the simple code

main()

you can stop with simple press q

for example you want to identiy a Youtube video, of one beautiful girl

or this video https://youtu.be/QW-qWS3StZg?t=170

or the classic traffic recognition https://youtu.be/7HaJArMDKgI

Owner
Ruslan Magana Vsevolodovna
I am Data Scientist and Data Engineer. I have a Ph.D. in Physics and I am AWS certified in Machine Learning and Data Analytics
Ruslan Magana Vsevolodovna
A community-supported supercharged version of paperless: scan, index and archive all your physical documents

Paperless-ngx Paperless-ngx is a document management system that transforms your physical documents into a searchable online archive so you can keep,

5.2k Jan 04, 2023
textspotter - An End-to-End TextSpotter with Explicit Alignment and Attention

An End-to-End TextSpotter with Explicit Alignment and Attention This is initially described in our CVPR 2018 paper. Getting Started Installation Clone

Tong He 323 Nov 10, 2022
Image processing in Python

scikit-image: Image processing in Python Website (including documentation): https://scikit-image.org/ Mailing list: https://mail.python.org/mailman3/l

Image Processing Toolbox for SciPy 5.2k Dec 30, 2022
text detection mainly based on ctpn model in tensorflow, id card detect, connectionist text proposal network

text-detection-ctpn Scene text detection based on ctpn (connectionist text proposal network). It is implemented in tensorflow. The origin paper can be

Shaohui Ruan 3.3k Dec 30, 2022
Handwritten Text Recognition (HTR) using TensorFlow 2.x

Handwritten Text Recognition (HTR) system implemented using TensorFlow 2.x and trained on the Bentham/IAM/Rimes/Saint Gall/Washington offline HTR data

Arthur Flôr 160 Dec 21, 2022
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
A python script based on opencv and paddleocr, which can automatically pick up tasks, make cookies, and receive rewards in the Destiny 2 Dawning Oven

A python script based on opencv and paddleocr, which can automatically pick up tasks, make cookies, and receive rewards in the Destiny 2 Dawning Oven

1 Dec 22, 2021
CellProfiler is a open-source application for biological image analysis

CellProfiler is a free open-source software designed to enable biologists without training in computer vision or programming to quantitatively measure phenotypes from thousands of images automaticall

CellProfiler 732 Dec 23, 2022
pulse2percept: A Python-based simulation framework for bionic vision

pulse2percept: A Python-based simulation framework for bionic vision Retinal degenerative diseases such as retinitis pigmentosa and macular degenerati

67 Dec 29, 2022
BD-ALL-DIGIT - This Is Bangladeshi All Sim Cloner Tools

BANGLADESHI ALL SIM CLONER TOOLS INSTALL TOOL ON TERMUX $ apt update $ apt upgra

MAHADI HASAN AFRIDI 2 Jan 19, 2022
【Auto】原神⭐钓鱼辅助工具 | 自动收竿、校准游标 | ✨您只需要抛出鱼竿,我们会帮你完成一切✨

原神钓鱼辅助工具 ✨ 作者正在努力重构代码中……会尽快带给大家一个更完美的脚本 ✨ 「您只需抛出鱼竿,然后我们会帮您搞定一切」 如果你觉得这个脚本好用,请点一个 Star ⭐ ,你的 Star 就是作者更新最大的动力 点击这里 查看演示视频 ✨ 欢迎大家在 Issues 中分享自己的配置文件 ✨ ✨

261 Jan 02, 2023
Textboxes implementation with Tensorflow (python)

tb_tensorflow A python implementation of TextBoxes Dependencies TensorFlow r1.0 OpenCV2 Code from Chaoyue Wang 03/09/2017 Update: 1.Debugging optimize

Jayne Shin (신재인) 20 May 31, 2019
Library used to deskew a scanned document

Deskew //Note: Skew is measured in degrees. Deskewing is a process whereby skew is removed by rotating an image by the same amount as its skew but in

Stéphane Brunner 273 Jan 06, 2023
零样本学习测评基准,中文版

ZeroCLUE 零样本学习测评基准,中文版 零样本学习是AI识别方法之一。 简单来说就是识别从未见过的数据类别,即训练的分类器不仅仅能够识别出训练集中已有的数据类别, 还可以对于来自未见过的类别的数据进行区分。 这是一个很有用的功能,使得计算机能够具有知识迁移的能力,并无需任何训练数据, 很符合现

CLUE benchmark 27 Dec 10, 2022
kaldi-asr/kaldi is the official location of the Kaldi project.

Kaldi Speech Recognition Toolkit To build the toolkit: see ./INSTALL. These instructions are valid for UNIX systems including various flavors of Linux

Kaldi 12.3k Jan 05, 2023
Rest API Written In Python To Classify NSFW Images.

✨ NSFW Classifier API ✨ Rest API Written In Python To Classify NSFW Images. Fastest Solution If you don't want to selfhost it, there's already an inst

Akshay Rajput 23 Dec 30, 2022
Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation

This is the official implementation of "Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation". For more details, please

Pengyuan Lyu 309 Dec 06, 2022
Virtual Zoom Gesture using OpenCV

Virtual_Zoom_Gesture I have created a virtual zoom gesture where we can Zoom in and Zoom out any image and even we can move that image anywhere on the

Mudit Sinha 2 Dec 26, 2021
End-to-end pipeline for real-time scene text detection and recognition.

Real-time-Scene-Text-Detection-and-Recognition-System End-to-end pipeline for real-time scene text detection and recognition. The detection model use

Fangneng Zhan 89 Aug 04, 2022
This can be use to convert text in a file to handwritten text.

TextToHandwriting This can be used to convert text to handwriting. Clone this project or download the code. Run TextToImage.py give the filename of th

Ashutosh Mahapatra 2 Feb 06, 2022