Laplace Redux -- Effortless Bayesian Deep Learning

Overview

Laplace Redux - Effortless Bayesian Deep Learning

This repository contains the code to run the experiments for the paper Laplace Redux - Effortless Bayesian Deep Learning (NeurIPS 2021), using our library laplace.

Requirements

After cloning the repository and creating a new virtual environment, install the package including all requirements with:

pip install .

For the BBB baseline, please follow the instructions in the corresponding README.

For running the WILDS experiments, please follow the instructions for installing the WILDS library and the required dependencies in the WILDS GitHub repository. Our experiments also require the transformers library (as mentioned in the WILDS GitHub repo under the section Installation/Default models). Our experiments were run and tested with version 1.1.0 of the WILDS library.

Uncertainty Quantification Experiments (Sections 4.2 and 4.3)

The script uq.py runs the distribution shift (rotated (F)MNIST, corrupted CIFAR-10) and OOD ((F)MNIST and CIFAR-10 as in-distribution) experiments reported in Section 4.2, as well as the experiments on the WILDS benchmark reported in Section 4.3. It expects pre-trained models, which can be downloaded here; they should be placed in the models directory. Due to the large filesize the SWAG models are not included. Please contact us if you are interested in obtaining them.

To more conveniently run the experiments with the same parameters as we used in the paper, we provide some dedicated config files for the results with the Laplace approximation ({x/y} highlights options x and y); note that you might want to change the download flag or the data_root in the config file:

python uq.py --benchmark {R-MNIST/MNIST-OOD} --config configs/post_hoc_laplace/mnist_{default/bestood}.yaml
python uq.py --benchmark {CIFAR-10-C/CIFAR-10-OOD} --config configs/post_hoc_laplace/cifar10_{default/bestood}.yaml

The config files with *_default contains the default library setting of the Laplace approximation (LA in the paper) and *_bestood the setting which performs best on OOD data (LA* in the paper).

For running the baselines, take a look at the commands in run_uq_baslines.sh.

Continual Learning Experiments (Section 4.4)

Run

python continual_learning.py

to reproduce the LA-KFAC result and run

python continual_learning.py --hessian_structure diag

to reproduce the LA-DIAG result of the continual learning experiment in Section 4.4.

Training Baselines

In order to train the baselines, please note the following:

  • Symlink your dataset dir to your ~/Datasets, e.g. ln -s /your/dataset/dir ~/Datasets.
  • Always run the training scripts from the project's root directory, e.g. python baselines/bbb/train.py.
Owner
Runa Eschenhagen
Runa Eschenhagen
Source code for our EMNLP'21 paper 《Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning》

Child-Tuning Source code for EMNLP 2021 Long paper: Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning. 1. Environ

46 Dec 12, 2022
Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph

Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph This repository provides a pipeline to create a knowledge graph from ra

AWS Samples 3 Jan 01, 2022
Accurate Phylogenetic Inference with Symmetry-Preserving Neural Networks

Accurate Phylogenetic Inference with a Symmetry-preserving Neural Network Model Claudia Solis-Lemus Shengwen Yang Leonardo Zepeda-Núñez This repositor

Leonardo Zepeda-Núñez 2 Feb 11, 2022
Supervised domain-agnostic prediction framework for probabilistic modelling

A supervised domain-agnostic framework that allows for probabilistic modelling, namely the prediction of probability distributions for individual data

The Alan Turing Institute 112 Oct 23, 2022
Here I will explain the flow to deploy your custom deep learning models on Ultra96V2.

Xilinx_Vitis_AI This repo will help you to Deploy your Deep Learning Model on Ultra96v2 Board. Prerequisites Vitis Core Development Kit 2019.2 This co

Amin Mamandipoor 1 Feb 08, 2022
A simple consistency training framework for semi-supervised image semantic segmentation

PseudoSeg: Designing Pseudo Labels for Semantic Segmentation PseudoSeg is a simple consistency training framework for semi-supervised image semantic s

Google Interns 143 Dec 13, 2022
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
Dynamic Bottleneck for Robust Self-Supervised Exploration

Dynamic Bottleneck Introduction This is a TensorFlow based implementation for our paper on "Dynamic Bottleneck for Robust Self-Supervised Exploration"

Bai Chenjia 4 Nov 14, 2022
Video Instance Segmentation with a Propose-Reduce Paradigm (ICCV 2021)

Propose-Reduce VIS This repo contains the official implementation for the paper: Video Instance Segmentation with a Propose-Reduce Paradigm Huaijia Li

DV Lab 39 Nov 23, 2022
[CVPR 2021] "Multimodal Motion Prediction with Stacked Transformers": official code implementation and project page.

mmTransformer Introduction This repo is official implementation for mmTransformer in pytorch. Currently, the core code of mmTransformer is implemented

DeciForce: Crossroads of Machine Perception and Autonomy 232 Dec 31, 2022
1st place solution in CCF BDCI 2021 ULSEG challenge

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
Pseudo-rng-app - whos needs science to make a random number when you have pseudoscience?

Pseudo-random numbers with pseudoscience rng is so complicated! Why cant we have a horoscopic, vibe-y way of calculating a random number? Why cant rng

Andrew Blance 1 Dec 27, 2021
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu

Meta Research 141 Jan 07, 2023
Robustness between the worst and average case

Robustness between the worst and average case A repository that implements intermediate robustness training and evaluation from the NeurIPS 2021 paper

CMU Locus Lab 16 Dec 02, 2022
SSD-based Object Detection in PyTorch

SSD-based Object Detection in PyTorch 서강대학교 현대모비스 SW 프로그램에서 진행한 인공지능 프로젝트입니다. Jetson nano를 이용해 pre-trained network를 fine tuning시켜 차량 및 신호등 인식을 구현하였습니다

Haneul Kim 1 Nov 16, 2021
Data-Driven Operational Space Control for Adaptive and Robust Robot Manipulation

OSCAR Project Page | Paper This repository contains the codebase used in OSCAR: Data-Driven Operational Space Control for Adaptive and Robust Robot Ma

NVIDIA Research Projects 74 Dec 22, 2022
Research on Event Accumulator Settings for Event-Based SLAM

Research on Event Accumulator Settings for Event-Based SLAM This is the source code for paper "Research on Event Accumulator Settings for Event-Based

Robin Shaun 26 Dec 21, 2022
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).

TransFG: A Transformer Architecture for Fine-grained Recognition Official PyTorch code for the paper: TransFG: A Transformer Architecture for Fine-gra

Ju He 307 Jan 03, 2023
Pytorch implementation of Bert and Pals: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning

PyTorch implementation of BERT and PALs Introduction Work by Asa Cooper Stickland and Iain Murray, University of Edinburgh. Code for BERT and PALs; mo

Asa Cooper Stickland 70 Dec 29, 2022
Official PyTorch implementation of the NeurIPS 2021 paper StyleGAN3

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Eugenio Herrera 92 Nov 18, 2022