SummVis is an interactive visualization tool for text summarization.

Overview

SummVis

SummVis is an interactive visualization tool for analyzing abstractive summarization model outputs and datasets.

Figure

Installation

IMPORTANT: Please use python>=3.8 since some dependencies require that for installation.

git clone https://github.com/robustness-gym/summvis.git
cd summvis
pip install -r requirements.txt
python -m spacy download en_core_web_sm

Quickstart

Follow the steps below to start using SummVis immediately.

1. Download and extract data

Download our pre-cached dataset that contains predictions for state-of-the-art models such as PEGASUS and BART on 1000 examples taken from the CNN / Daily Mail validation set.

mkdir data
mkdir preprocessing
curl https://storage.googleapis.com/sfr-summvis-data-research/cnn_dailymail_1000.validation.anonymized.zip --output preprocessing/cnn_dailymail_1000.validation.anonymized.zip
unzip preprocessing/cnn_dailymail_1000.validation.anonymized.zip -d preprocessing/

2. Deanonymize data

Next, we'll need to add the original examples from the CNN / Daily Mail dataset to deanonymize the data (this information is omitted for copyright reasons). The preprocessing.py script can be used for this with the --deanonymize flag.

Deanonymize 10 examples (try_it mode):

python preprocessing.py \
--deanonymize \
--dataset_rg preprocessing/cnn_dailymail_1000.validation.anonymized \
--dataset cnn_dailymail \
--version 3.0.0 \
--split validation \
--processed_dataset_path data/try:cnn_dailymail_1000.validation \
--try_it

This will take between 10 seconds and several minutes depending on whether you've previously loaded CNN/DailyMail from the Datasets library.

3. Run SummVis

Finally, we're ready to run the Streamlit app. Once the app loads, make sure it's pointing to the right File at the top of the interface.

streamlit run summvis.py

General instructions for running with pre-loaded datasets

1. Download one of the pre-loaded datasets:

CNN / Daily Mail (1000 examples from validation set): https://storage.googleapis.com/sfr-summvis-data-research/cnn_dailymail_1000.validation.anonymized.zip
CNN / Daily Mail (full validation set): https://storage.googleapis.com/sfr-summvis-data-research/cnn_dailymail.validation.anonymized.zip
XSum (1000 examples from validation set): https://storage.googleapis.com/sfr-summvis-data-research/xsum_1000.validation.anonymized.zip
XSum (full validation set): https://storage.googleapis.com/sfr-summvis-data-research/xsum.validation.anonymized.zip

We recommend that you choose the smallest dataset that fits your need in order to minimize download / preprocessing time.

Example: Download and unzip CNN / Daily Mail

mkdir data
mkdir preprocessing
curl https://storage.googleapis.com/sfr-summvis-data-research/cnn_dailymail_1000.validation.anonymized.zip --output preprocessing/cnn_dailymail_1000.validation.anonymized.zip
unzip preprocessing/cnn_dailymail_1000.validation.anonymized.zip -d preprocessing/

2. Deanonymize n examples:

Set the --n_samples argument and name the --processed_dataset_path output file accordingly.

Example: Deanonymize 100 examples from CNN / Daily Mail:

python preprocessing.py \
--deanonymize \
--dataset_rg preprocessing/cnn_dailymail_1000.validation.anonymized \
--dataset cnn_dailymail \
--version 3.0.0 \
--split validation \
--processed_dataset_path data/100:cnn_dailymail_1000.validation \
--n_samples 100

Example: Deanonymize all pre-loaded examples from CNN / Daily Mail (1000 examples dataset):

python preprocessing.py \
--deanonymize \
--dataset_rg preprocessing/cnn_dailymail_1000.validation.anonymized \
--dataset cnn_dailymail \
--version 3.0.0 \
--split validation \
--processed_dataset_path data/full:cnn_dailymail_1000.validation \
--n_samples 1000

Example: Deanonymize all pre-loaded examples from CNN / Daily Mail (full dataset):

python preprocessing.py \
--deanonymize \
--dataset_rg preprocessing/cnn_dailymail.validation.anonymized \
--dataset cnn_dailymail \
--version 3.0.0 \
--split validation \
--processed_dataset_path data/full:cnn_dailymail.validation

Example: Deanonymize all pre-loaded examples from XSum (1000 examples dataset):

python preprocessing.py \
--deanonymize \
--dataset_rg preprocessing/xsum_1000.validation.anonymized \
--dataset xsum \
--split validation \
--processed_dataset_path data/full:xsum_1000.validation \
--n_samples 1000

3. Run SummVis

Once the app loads, make sure it's pointing to the right File at the top of the interface.

streamlit run summvis.py

Alternately, if you need to point SummVis to a folder where your data is stored.

streamlit run summvis.py -- --path your/path/to/data

Note that the additional -- is not a mistake, and is required to pass command-line arguments in streamlit.

Get your data into SummVis: end-to-end preprocessing

You can also perform preprocessing end-to-end to load any summarization dataset or model predictions into SummVis. Instructions for this are provided below.

Prior to running the following, an additional install step is required:

python -m spacy download en_core_web_lg

1. Standardize and save dataset to disk.

Loads in a dataset from HF, or any dataset that you have and stores it in a standardized format with columns for document and summary:reference.

Example: Save CNN / Daily Mail validation split to disk as a jsonl file.

python preprocessing.py \
--standardize \
--dataset cnn_dailymail \
--version 3.0.0 \
--split validation \
--save_jsonl_path preprocessing/cnn_dailymail.validation.jsonl

Example: Load custom my_dataset.jsonl, standardize, and save.

python preprocessing.py \
--standardize \
--dataset_jsonl path/to/my_dataset.jsonl \
--doc_column name_of_document_column \
--reference_column name_of_reference_summary_column \
--save_jsonl_path preprocessing/my_dataset.jsonl

2. Add predictions to the saved dataset.

Takes a saved dataset that has already been standardized and adds predictions to it from prediction jsonl files. Cached predictions for several models available here: https://storage.googleapis.com/sfr-summvis-data-research/predictions.zip

You may also generate your own predictions using this this script.

Example: Add 6 prediction files for PEGASUS and BART to the dataset.

python preprocessing.py \
--join_predictions \
--dataset_jsonl preprocessing/cnn_dailymail.validation.jsonl \
--prediction_jsonls \
predictions/bart-cnndm.cnndm.validation.results.anonymized \
predictions/bart-xsum.cnndm.validation.results.anonymized \
predictions/pegasus-cnndm.cnndm.validation.results.anonymized \
predictions/pegasus-multinews.cnndm.validation.results.anonymized \
predictions/pegasus-newsroom.cnndm.validation.results.anonymized \
predictions/pegasus-xsum.cnndm.validation.results.anonymized \
--save_jsonl_path preprocessing/cnn_dailymail.validation.jsonl

3. Run the preprocessing workflow and save the dataset.

Takes a saved dataset that has been standardized, and predictions already added. Applies all the preprocessing steps to it (running spaCy, lexical and semantic aligners), and stores the processed dataset back to disk.

Example: Autorun with default settings on a few examples to try it.

python preprocessing.py \
--workflow \
--dataset_jsonl preprocessing/cnn_dailymail.validation.jsonl \
--processed_dataset_path data/cnn_dailymail.validation \
--try_it

Example: Autorun with default settings on all examples.

python preprocessing.py \
--workflow \
--dataset_jsonl preprocessing/cnn_dailymail.validation.jsonl \
--processed_dataset_path data/cnn_dailymail

Citation

When referencing this repository, please cite this paper:

@misc{vig2021summvis,
      title={SummVis: Interactive Visual Analysis of Models, Data, and Evaluation for Text Summarization}, 
      author={Jesse Vig and Wojciech Kryscinski and Karan Goel and Nazneen Fatema Rajani},
      year={2021},
      eprint={2104.07605},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2104.07605}
}

Acknowledgements

We thank Michael Correll for his valuable feedback.

Owner
Robustness Gym
Building tools for evaluating and repairing ML models.
Robustness Gym
Flexitext is a Python library that makes it easier to draw text with multiple styles in Matplotlib

Flexitext is a Python library that makes it easier to draw text with multiple styles in Matplotlib

Tomás Capretto 93 Dec 28, 2022
A concise grammar of interactive graphics, built on Vega.

Vega-Lite Vega-Lite provides a higher-level grammar for visual analysis that generates complete Vega specifications. You can find more details, docume

Vega 4k Jan 08, 2023
Painlessly create beautiful matplotlib plots.

Announcement Thank you to everyone who has used prettyplotlib and made it what it is today! Unfortunately, I no longer have the bandwidth to maintain

Olga Botvinnik 1.6k Jan 06, 2023
MPL Plotter is a Matplotlib based Python plotting library built with the goal of delivering publication-quality plots concisely.

MPL Plotter is a Matplotlib based Python plotting library built with the goal of delivering publication-quality plots concisely.

Antonio López Rivera 162 Nov 11, 2022
clock_plot provides a simple way to visualize timeseries data, mapping 24 hours onto the 360 degrees of a polar plot

clock_plot clock_plot provides a simple way to visualize timeseries data mapping 24 hours onto the 360 degrees of a polar plot. For usage, please see

12 Aug 24, 2022
A simple agent-based model used to teach the basics of OOP in my lectures

Pydemic A simple agent-based model of a pandemic. This is used to teach basic principles of object-oriented programming to master students. It is not

Fabien Maussion 2 Jun 08, 2022
Geocoding library for Python.

geopy geopy is a Python client for several popular geocoding web services. geopy makes it easy for Python developers to locate the coordinates of addr

geopy 3.8k Jan 02, 2023
Example Code Notebooks for Data Visualization in Python

This repository contains sample code scripts for creating awesome data visualizations from scratch using different python libraries (such as matplotli

Javed Ali 27 Jan 04, 2023
ScisorWiz: Differential Isoform Visualizer for Long-Read RNA Sequencing Data

ScisorWiz: Vizualizer for Differential Isoform Expression README ScisorWiz is a linux-based R-package for visualizing differential isoform expression

Alexander Stein 6 Oct 04, 2022
A python visualization of the A* path finding algorithm

A python visualization of the A* path finding algorithm. It allows you to pick your start, end location and make obstacles and then view the process of finding the shortest path. You can also choose

Kimeon 4 Aug 02, 2022
demir.ai Dataset Operations

demir.ai Dataset Operations With this application, you can have the empty values (nan/null) deleted or filled before giving your dataset to machine le

Ahmet Furkan DEMIR 8 Nov 01, 2022
A Scheil-Gulliver simulation tool using pycalphad.

scheil A Scheil-Gulliver simulation tool using pycalphad. import matplotlib.pyplot as plt from pycalphad import Database, variables as v from scheil i

pycalphad 6 Dec 10, 2021
This is a small repository for me to implement my simply Data Visualisation skills through Python.

Data Visualisations This is a small repository for me to implement my simply Data Visualisation skills through Python. Steam Population Chart from 10/

9 Dec 31, 2021
GD-UltraHack - A Mod Menu for Geometry Dash. Specifically a MegahackV5 clone in Python. Only for Windows

GD UltraHack: The Mod Menu that Nobody asked for. This is a mod menu for the gam

zeo 1 Jan 05, 2022
🧇 Make Waffle Charts in Python.

PyWaffle PyWaffle is an open source, MIT-licensed Python package for plotting waffle charts. It provides a Figure constructor class Waffle, which coul

Guangyang Li 528 Jan 02, 2023
Standardized plots and visualizations in Python

Standardized plots and visualizations in Python pltviz is a Python package for standardized visualization. Routine and novel plotting approaches are f

Andrew Tavis McAllister 0 Jul 09, 2022
Advanced hot reloading for Python

The missing element of Python - Advanced Hot Reloading Details Reloadium adds hot reloading also called "edit and continue" functionality to any Pytho

Reloadware 1.9k Jan 04, 2023
Browse Dash docsets inside emacs

Helm Dash What's it This package uses Dash docsets inside emacs to browse documentation. Here's an article explaining the basic usage of it. It doesn'

504 Dec 15, 2022
Application for viewing pokemon regional variants.

Pokemon Regional Variants Application Application for viewing pokemon regional variants. Run The Source Code Download Python https://www.python.org/do

Michael J Bailey 4 Oct 08, 2021
A GUI for Pandas DataFrames

PandasGUI A GUI for analyzing Pandas DataFrames. Demo Installation Install latest release from PyPi: pip install pandasgui Install directly from Githu

Adam 2.8k Jan 03, 2023