[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets

Overview

[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets

Introduction

This repo contains the source code accompanying the paper:

Well-tuned Simple Nets Excel on Tabular Datasets

Authors: Arlind Kadra, Marius Lindauer, Frank Hutter, Josif Grabocka

Tabular datasets are the last "unconquered castle" for deep learning, with traditional ML methods like Gradient-Boosted Decision Trees still performing strongly even against recent specialized neural architectures. In this paper, we hypothesize that the key to boosting the performance of neural networks lies in rethinking the joint and simultaneous application of a large set of modern regularization techniques. As a result, we propose regularizing plain Multilayer Perceptron (MLP) networks by searching for the optimal combination/cocktail of 13 regularization techniques for each dataset using a joint optimization over the decision on which regularizers to apply and their subsidiary hyperparameters.

We empirically assess the impact of these regularization cocktails for MLPs on a large-scale empirical study comprising 40 tabular datasets and demonstrate that: (i) well-regularized plain MLPs significantly outperform recent state-of-the-art specialized neural network architectures, and (ii) they even outperform strong traditional ML methods, such as XGBoost.

News: Our work is accepted in the Thirty-fifth Conference on Neural Information Processing Systems (NeurIPS 2021).

Setting up the virtual environment

Our work is built on top of AutoPyTorch. To look at our implementation of the regularization cocktail ingredients, you can do the following:

git clone https://github.com/automl/Auto-PyTorch.git
cd Auto-PyTorch/
git checkout regularization_cocktails

To install the version of AutoPyTorch that features our work, you can use these additional commands:

# The following commands assume the user is in the cloned directory
conda create -n reg_cocktails python=3.8
conda activate reg_cocktails
conda install gxx_linux-64 gcc_linux-64 swig
cat requirements.txt | xargs -n 1 -L 1 pip install
python setup.py install

Running the Regularization Cocktail code

The main files to run the regularization cocktails are in the cocktails folder and are main_experiment.py and refit_experiment.py. The first module can be used to start a full HPO search, while, the other module can be used to refit on certain datasets when the time does not suffice to perform the full HPO search and to complete the refit of the incumbent hyperparameter configuration.

The main arguments for main_experiment.py:

  • --task_id: The task id in OpenML. Basically the dataset that will be used in the experiment.
  • --wall_time: The total runtime to be used. It is the total runtime for the HPO search and also final refit.
  • --func_eval_time: The maximal time for one function evaluation parametrized by a certain hyperparameter configuration.
  • --epochs: The number of epochs for one hyperparameter configuration to be evaluated on.
  • --seed: The seed to be used for the run.
  • --tmp_dir: The temporary directory for the results to be stored in.
  • --output_dir: The output directory for the results to be stored in.
  • --nr_workers: The number of workers which corresponds to the number of hyperparameter configurations run in parallel.
  • --nr_threads: The number of threads.
  • --cash_cocktail: An important flag that activates the regularization cocktail formulation.

A minimal example of running the regularization cocktails:

python main_experiment.py --task_id 233088 --wall_time 600 --func_eval_time 60 --epochs 10 --seed 42 --cash_cocktail True

The example above will run the regularization cocktails for 10 minutes, with a function evaluation limit of 50 seconds for task 233088. Every hyperparameter configuration will be evaluated for 10 epochs, the seed 42 will be used for the experiment and data splits.

A minimal example of running only one regularization method:

python main_experiment.py --task_id 233088 --wall_time 600 --func_eval_time 60 --epochs 10 --seed 42 --use_weight_decay

In case you would like to investigate individual regularization methods, you can look at the different arguments that control them in the main_experiment.py. Additionally, if you want to remove the limit on the number of hyperparameter configurations, you can remove the following lines:

smac_scenario_args={
    'runcount_limit': number_of_configurations_limit,
}

Plots

The plots that are included in our paper were generated from the functions in the module results.py. Although mentioned in most function documentations, most of the functions that plot the baseline diagrams and plots expect a folder structure as follows:

common_result_folder/baseline/results.csv

There are functions inside the module itself that generate the results.csv files.

Baselines

The code for running the baselines can be found in the baselines folder.

  • TabNet, XGBoost, CatBoost can be found in the baselines/bohb folder.
  • The other baselines like AutoGluon, auto-sklearn and Node can be found in the corresponding folders named the same.

TabNet, XGBoost, CatBoost and AutoGluon have the same two main files as our regularization cocktails, main_experiment.py and refit_experiment.py.

Figures

alt text

Citation

@article{kadra2021regularization,
  title={Regularization is all you Need: Simple Neural Nets can Excel on Tabular Data},
  author={Kadra, Arlind and Lindauer, Marius and Hutter, Frank and Grabocka, Josif},
  journal={arXiv preprint arXiv:2106.11189},
  year={2021}
}
On-device speech-to-index engine powered by deep learning.

On-device speech-to-index engine powered by deep learning.

Picovoice 30 Nov 24, 2022
[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.

SapBERT: Self-alignment pretraining for BERT This repo holds code for the SapBERT model presented in our NAACL 2021 paper: Self-Alignment Pretraining

Cambridge Language Technology Lab 104 Dec 07, 2022
Autoregressive Predictive Coding: An unsupervised autoregressive model for speech representation learning

Autoregressive Predictive Coding This repository contains the official implementation (in PyTorch) of Autoregressive Predictive Coding (APC) proposed

iamyuanchung 173 Dec 18, 2022
NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.

NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.

880 Jan 07, 2023
Code repository for the paper: Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild (ICCV 2021)

Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild Akash Sengupta, Ignas Budvytis, Robert

Akash Sengupta 149 Dec 14, 2022
ISBI 2022: Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image.

Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image Introduction This repository contains the PyTorch implem

25 Nov 09, 2022
a spacial-temporal pattern detection system for home automation

Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan

Angad Singh 133 Jan 05, 2023
GMFlow: Learning Optical Flow via Global Matching

GMFlow GMFlow: Learning Optical Flow via Global Matching Authors: Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Dacheng Tao We streamline the

Haofei Xu 298 Jan 04, 2023
reimpliment of DFANet: Deep Feature Aggregation for Real-Time Semantic Segmentation

DFANet This repo is an unofficial pytorch implementation of DFANet:Deep Feature Aggregation for Real-Time Semantic Segmentation log 2019.4.16 After 48

shen hui xiang 248 Oct 21, 2022
Pose estimation for iOS and android using TensorFlow 2.0

💃 Mobile 2D Single Person (Or Your Own Object) Pose Estimation for TensorFlow 2.0 This repository is forked from edvardHua/PoseEstimationForMobile wh

tucan9389 165 Nov 16, 2022
Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021)

RSCD (BS-RSCD & JCD) Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021) by Zhihang Zhong, Yinqiang Zheng, Imari Sato We co

81 Dec 15, 2022
Object recognition using Azure Custom Vision AI and Azure Functions

Step by Step on how to create an object recognition model using Custom Vision, export the model and run the model in an Azure Function

El Bruno 11 Jul 08, 2022
Transformer model implemented with Pytorch

transformer-pytorch Transformer model implemented with Pytorch Attention is all you need-[Paper] Architecture Self-Attention self_attention.py class

Mingu Kang 12 Sep 03, 2022
Code repository for EMNLP 2021 paper 'Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods'

Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods This is the code repository to accompany the EMNLP 2021 paper on ad

Peru Bhardwaj 7 Sep 25, 2022
Text-to-Image generation

Generate vivid Images for Any (Chinese) text CogView is a pretrained (4B-param) transformer for text-to-image generation in general domain. Read our p

THUDM 1.3k Dec 29, 2022
Count GitHub Stars ⭐

Count GitHub Stars per Day ⭐ Track GitHub stars per day over a date range to measure the open-source popularity of different repositories. Requirement

Ultralytics 20 Nov 20, 2022
Pytorch implementation of MLP-Mixer with loading pre-trained models.

MLP-Mixer-Pytorch PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision with the function of loading official ImageNet pre-trained p

Qiushi Yang 2 Sep 29, 2022
Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

zshicode 1 Nov 18, 2021
Rust bindings for the C++ api of PyTorch.

tch-rs Rust bindings for the C++ api of PyTorch. The goal of the tch crate is to provide some thin wrappers around the C++ PyTorch api (a.k.a. libtorc

Laurent Mazare 2.3k Dec 30, 2022
Pairwise model for commonlit competition

Pairwise model for commonlit competition To run: - install requirements - create input directory with train_folds.csv and other competition data - cd

abhishek thakur 45 Aug 31, 2022