Multi-Objective Loss Balancing for Physics-Informed Deep Learning

Overview

Multi-Objective Loss Balancing for Physics-Informed Deep Learning

Code for ReLoBRaLo.

Abstract

Physics Informed Neural Networks (PINN) are algorithms from deeplearning leveraging physical laws by including partial differential equations (PDE)together with a respective set of boundary and initial conditions (BC / IC) aspenalty terms into their loss function. As the PDE, BC and IC loss function parts cansignificantly differ in magnitudes, due to their underlying physical units or stochasticityof initialisation, training of PINNs may suffer from severe convergence and efficiencyproblems, causing PINNs to stay beyond desirable approximation quality. In thiswork, we observe the significant role of correctly weighting the combination of multiplecompetitive loss functions for training PINNs effectively. To that end, we implementand evaluate different methods aiming at balancing the contributions of multipleterms of the PINNs loss function and their gradients. After review of three existingloss scaling approaches (Learning Rate Annealing, GradNorm as well as SoftAdapt),we propose a novel self-adaptive loss balancing of PINNs calledReLoBRaLo(RelativeLoss Balancing with Random Lookback). Finally, the performance of ReLoBRaLo iscompared and verified against these approaches by solving both forward as well asinverse problems on three benchmark PDEs for PINNs: Burgers’ equation, Kirchhoff’splate bending equation and Helmholtz’s equation. Our simulation studies show thatReLoBRaLo training is much faster and achieves higher accuracy than training PINNswith other balancing methods and hence is very effective and increases sustainabilityof PINNs algorithms. The adaptability of ReLoBRaLo illustrates robustness acrossdifferent PDE problem settings. The proposed method can also be employed tothe wider class of penalised optimisation problems, including PDE-constrained andSobolev training apart from the studied PINNs examples.

Launch Training

Example:

python train.py --verbose --layers 2 --nodes 32 --task helmholtz --update_rule relobralo --resample

The available options are the following:

  • --path, default: experiments, type: str, path where to store the results

  • --layers, default: 1, type: int, number of layers

  • --nodes, default: 32, type: int, number of nodes

  • --network, default: fc, type: str, type of network

  • --optimizer, default: adam, type: str, type of optimizer

  • --lr, default: 0.001, type: float, learning rate

  • --patience, default: 3, type: int, how many evaluations without improvement to wait before reducing learning rate

  • --factor, default: .1, type: float, multiplicative factor by which to reduce the learning rate

  • --task, default: helmholtz, type: str, type of task to fit

  • --inverse, action: store_true, solve inverse problem

  • --inverse_var, default: None, type: float, target inverse variable

  • --update_rule, default: manual, type: str, type of balancing

  • --T, default: 1., type: float, temperature parameter for softmax

  • --alpha, default: .999, type: float, rate for exponential decay

  • --rho, default: 1., type: float, rate for exponential decay

  • --aggregate_boundaries, action: store_true, aggregate all boundary terms into one before balancing

  • --epochs, default: 100000, type: int, number of epochs

  • --resample, action: store_true, resample datapoints or keep them fixed

  • --batch_size, default: 1024, type: int, number of sampled points in a batch

  • --verbose, action: store_true, print progress to terminal

Owner
Rafael Bischof
Rafael Bischof
TAug :: Time Series Data Augmentation using Deep Generative Models

TAug :: Time Series Data Augmentation using Deep Generative Models Note!!! The package is under development so be careful for using in production! Fea

35 Dec 06, 2022
Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task

multi-task_losses_optimizer Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task 已经实验过了,不会有cuda out of memory情况 ##Par

14 Dec 25, 2022
Auditing Black-Box Prediction Models for Data Minimization Compliance

Data-Minimization-Auditor An auditing tool for model-instability based data minimization that is introduced in "Auditing Black-Box Prediction Models f

Bashir Rastegarpanah 2 Mar 24, 2022
Tensorflow Repo for "DeepGCNs: Can GCNs Go as Deep as CNNs?"

DeepGCNs: Can GCNs Go as Deep as CNNs? In this work, we present new ways to successfully train very deep GCNs. We borrow concepts from CNNs, mainly re

Guohao Li 612 Nov 15, 2022
A fast MoE impl for PyTorch

An easy-to-use and efficient system to support the Mixture of Experts (MoE) model for PyTorch.

Rick Ho 873 Jan 09, 2023
Image process framework based on plugin like imagej, it is esay to glue with scipy.ndimage, scikit-image, opencv, simpleitk, mayavi...and any libraries based on numpy

Introduction ImagePy is an open source image processing framework written in Python. Its UI interface, image data structure and table data structure a

ImagePy 1.2k Dec 29, 2022
DA2Lite is an automated model compression toolkit for PyTorch.

DA2Lite (Deep Architecture to Lite) is a toolkit to compress and accelerate deep network models. ⭐ Star us on GitHub — it helps!! Frameworks & Librari

Sinhan Kang 7 Mar 22, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation This repository contains the official PyTorch implementation of the following

Wonjong Jang 270 Dec 30, 2022
Pytorch implementation of Deep Recursive Residual Network for Super Resolution (DRRN)

DRRN-pytorch This is an unofficial implementation of "Deep Recursive Residual Network for Super Resolution (DRRN)", CVPR 2017 in Pytorch. [Paper] You

yun_yang 192 Dec 12, 2022
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

Ayushman Dash 93 Aug 04, 2022
Local Attention - Flax module for Jax

Local Attention - Flax Autoregressive Local Attention - Flax module for Jax Install $ pip install local-attention-flax Usage from jax import random fr

Phil Wang 16 Jun 16, 2022
SCALoss: Side and Corner Aligned Loss for Bounding Box Regression (AAAI2022).

SCALoss PyTorch implementation of the paper "SCALoss: Side and Corner Aligned Loss for Bounding Box Regression" (AAAI 2022). Introduction IoU-based lo

TuZheng 20 Sep 07, 2022
Framework for training options with different attention mechanism and using them to solve downstream tasks.

Using Attention in HRL Framework for training options with different attention mechanism and using them to solve downstream tasks. Requirements GPU re

5 Nov 03, 2022
PyTorch implementation for ComboGAN

ComboGAN This is our ongoing PyTorch implementation for ComboGAN. Code was written by Asha Anoosheh (built upon CycleGAN) [ComboGAN Paper] If you use

Asha Anoosheh 139 Dec 20, 2022
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. Check the unlearning effect

Yige-Li 51 Dec 07, 2022
[ACM MM 2021] TSA-Net: Tube Self-Attention Network for Action Quality Assessment

Tube Self-Attention Network (TSA-Net) This repository contains the PyTorch implementation for paper TSA-Net: Tube Self-Attention Network for Action Qu

ShunliWang 18 Dec 23, 2022
Voice control for Garry's Mod

WIP: Talonvoice GMod integrations Very work in progress voice control demo for Garry's Mod. HOWTO Install https://talonvoice.com/ Press https://i.imgu

Meta Construct 5 Nov 15, 2022
CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search

CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search This repository is the official implementation of CAPITAL: Optimal Subgrou

Hengrui Cai 0 Oct 19, 2021
Localization Distillation for Object Detection

Localization Distillation for Object Detection This repo is based on mmDetection. This is the code for our paper: Localization Distillation

274 Dec 26, 2022