Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images

Related tags

Deep LearningDEA-Net
Overview

Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images

In this paper, we present an effective Dynamic Enhancement Anchor (DEA) network to construct a novel training sample generator. Different from other state-of-the-art techniques, the proposed network leverages a sample discriminator to realize interactive sample screening between an anchor-based unit and an anchor-free unit to generate eligible samples. Besides, multi-task joint training with a conservative anchor-based inference scheme enhances the performance of the proposed model while suppressing computational complexity. The proposed scheme supports both oriented and horizontal object detection tasks. Extensive experiments on two challenging aerial benchmarks (i.e., DOTA and HRSC2016) indicate that our method achieves state-of-the-art performance in accuracy with moderate inference speeds and computational overhead for training.

Introduction

This codebase is created to build benchmarks for object detection in aerial images. It is modified from mmdetection. The master branch works with PyTorch 1.1 or higher. If you would like to use PyTorch 0.4.1, please checkout to the pytorch-0.4.1 branch.

Results

Visualization results for oriented object detection on the test set of DOTA. Different class results

Comparison to the baseline on DOTA for oriented object detection. The figures with blue boxes are the results of the baseline and pink boxes are the results of our proposed DEA-Net. Baseline and DEA-Net results

Benchmark and model zoo

ImageNet Pretrained Model from Pytorch

Installation

Please refer to INSTALL.md for installation.

Get Started

Please see GETTING_STARTED.md for the basic usage of mmdetection.

Contributing

We appreciate all contributions to improve benchmarks for object detection in aerial images.

Thanks to the Third Party Libs

Pytorch

mmdetection

AerialDetection

FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data

FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data. Flexible EM-Inspired Discriminant Analysis is a robust supervised classification algorithm that performs well i

0 Sep 06, 2022
An implementation of "Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport"

Optex An implementation of Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport for TU Delft CS4240. You c

Hans Brouwer 33 Jan 05, 2023
An essential implementation of BYOL in PyTorch + PyTorch Lightning

Essential BYOL A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Ligh

Enrico Fini 48 Sep 27, 2022
Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec

Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec This repo

Building and Urban Data Science (BUDS) Group 5 Dec 02, 2022
Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks

flownet2-pytorch Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks. Multiple GPU training is supported, a

NVIDIA Corporation 2.8k Dec 27, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
The project is an official implementation of our paper "3D Human Pose Estimation with Spatial and Temporal Transformers".

3D Human Pose Estimation with Spatial and Temporal Transformers This repo is the official implementation for 3D Human Pose Estimation with Spatial and

Ce Zheng 363 Dec 28, 2022
NIMA: Neural IMage Assessment

PyTorch NIMA: Neural IMage Assessment PyTorch implementation of Neural IMage Assessment by Hossein Talebi and Peyman Milanfar. You can learn more from

Kyryl Truskovskyi 293 Dec 30, 2022
Differential fuzzing for the masses!

NEZHA NEZHA is an efficient and domain-independent differential fuzzer developed at Columbia University. NEZHA exploits the behavioral asymmetries bet

147 Dec 05, 2022
Course on computational design, non-linear optimization, and dynamics of soft systems at UIUC.

Computational Design and Dynamics of Soft Systems · This is a repository that contains the source code for generating the lecture notes, handouts, exe

Tejaswin Parthasarathy 4 Jul 21, 2022
Image Captioning using CNN ,LSTM and Attention

Image Captioning using CNN ,LSTM and Attention This is a deeplearning model which tries to summarize an image into a text . Installation Install this

ASUTOSH GHANTO 1 Dec 16, 2021
Fast, general, and tested differentiable structured prediction in PyTorch

Fast, general, and tested differentiable structured prediction in PyTorch

HNLP 1.1k Dec 16, 2022
Trax — Deep Learning with Clear Code and Speed

Trax — Deep Learning with Clear Code and Speed Trax is an end-to-end library for deep learning that focuses on clear code and speed. It is actively us

Google 7.3k Dec 26, 2022
Code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge.

Open Sesame This repository contains the code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge. Credits We built the project on t

9 Jul 24, 2022
Fast and simple implementation of RL algorithms, designed to run fully on GPU.

RSL RL Fast and simple implementation of RL algorithms, designed to run fully on GPU. This code is an evolution of rl-pytorch provided with NVIDIA's I

Robotic Systems Lab - Legged Robotics at ETH Zürich 68 Dec 29, 2022
[CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment

RADN [CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment [Paper on arXiv] Overview Update [2021/5/7] add codes for W

IIGROUP 53 Dec 28, 2022
Sequence Modeling with Structured State Spaces

Structured State Spaces for Sequence Modeling This repository provides implementations and experiments for the following papers. S4 Efficiently Modeli

HazyResearch 896 Jan 01, 2023
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Peter Lin 6.5k Jan 04, 2023
Transfer Learning Shootout for PyTorch's model zoo (torchvision)

pytorch-retraining Transfer Learning shootout for PyTorch's model zoo (torchvision). Load any pretrained model with custom final layer (num_classes) f

Alexander Hirner 169 Jun 29, 2022
Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweeper.

Minesweeper-AI Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweep

Beckham 0 Jul 20, 2022