Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation

Related tags

Deep LearningDRS
Overview

Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation (AAAI 2021)

Official pytorch implementation of our paper: Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation [Paper], Beomyoung Kim, Sangeun Han, and Junmo Kim, AAAI 2021

PWC PWC

We propose the discriminative region suppression (DRS) module that is a simple yet effective method to expand object activation regions. DRS suppresses the attention on discriminative regions and spreads it to adjacent non-discriminative regions, generating dense localization maps.

DRS module

Setup

  1. Dataset Preparing

    # dataset structure
    VOC2012/
        --- Annotations/
        --- ImageSets/
        --- JPEGImages/
        --- SegmentationClassAug/
        --- saliency_map/
        --- refined_pseudo_segmentation_labels/
    
  2. Requirements pip install -r requirements.txt

Training & Pseudo Segmentation Labels Generation

  • step1 : training the classifier with DRS modules
  • step2 : training the refinement network for the localization maps refinement
  • step3 : pseudo segmentation labels generation
# all-in-one
bash run.sh 
Model pretrained
VGG-16 with the learnable DRS DRS_learnable/best.pth
Refinement network Refine_DRS_learnable/best.pth
Pseudo Segmentation Labels refined_pseudo_segmentation_labels/

Training the DeepLab-V2 using pseudo labels

We adopt the DeepLab-V2 pytorch implementation from https://github.com/kazuto1011/deeplab-pytorch.

cd DeepLab-V2-PyTorch/

# motify the dataset path (DATASET.ROOT)
vi configs/voc12.yaml

# 1. training the DeepLab-V2 using pseudo labels
bash train.sh

# 2. evaluation the DeepLab-V2
bash eval.sh
Model mIoU mIoU + CRF pretrained
DeepLab-V2 with ResNet-101 69.4% 70.4% [link]
  • Note that the pretrained weight path ./DeepLab-V2-Pytorch/data/models/Deeplabv2_pseudo_segmentation_labels/deeplabv2_resnet101_msc/train_cls/checkpoint_final.pth
  • According to the DeepLab-V2 pytorch implementation we used, we requires an initial weights [download].

Citation

We hope that you find this work useful. If you would like to acknowledge us, please, use the following citation:

@inproceedings{kim2021discriminative,
    title={Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation},
    author={Kim, Beomyoung and Han, Sangeun and Kim, Junmo},
    year={2021},
    booktitle={AAAI Conference on Artificial Intelligence},
}
Owner
Beom
Computer Vision & Deep Learning
Beom
Disagreement-Regularized Imitation Learning

Due to a normalization bug the expert trajectories have lower performance than the rl_baseline_zoo reported experts. Please see the following link in

Kianté Brantley 25 Apr 28, 2022
Source code for PairNorm (ICLR 2020)

PairNorm Official pytorch source code for PairNorm paper (ICLR 2020) This code requires pytorch_geometric=1.3.2 usage For SGC, we use original PairNo

62 Dec 08, 2022
Simulation of Self Driving Car

In this repository, the code to use Udacity's self driving car simulator as a testbed for training an autonomous car are provided.

Shyam Das Shrestha 1 Nov 21, 2021
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)

wsss-analysis The code of: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains, arXiv pre-print 2019 paper.

Lyndon Chan 48 Dec 18, 2022
[ACMMM 2021, Oral] Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception"

EIP: Elastic Interaction of Particles Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception", in ACMMM (Oral) 2021. By Yikai

Yikai Wang 37 Dec 20, 2022
Implementation of CSRL from the AAAI2022 paper: Constraint Sampling Reinforcement Learning: Incorporating Expertise For Faster Learning

CSRL Implementation of CSRL from the AAAI2022 paper: Constraint Sampling Reinforcement Learning: Incorporating Expertise For Faster Learning Python: 3

4 Apr 14, 2022
Recurrent Neural Network Tutorial, Part 2 - Implementing a RNN in Python and Theano

Please read the blog post that goes with this code! Jupyter Notebook Setup System Requirements: Python, pip (Optional) virtualenv To start the Jupyter

Denny Britz 863 Dec 15, 2022
Using contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations

The official code for the paper "Inverse Problems Leveraging Pre-trained Contrastive Representations" (to appear in NeurIPS 2021).

Sriram Ravula 26 Dec 10, 2022
Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021)

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) Overview Prerequisites Linux Pytho

Shaojie Li 34 Mar 31, 2022
Data-driven reduced order modeling for nonlinear dynamical systems

SSMLearn Data-driven Reduced Order Models for Nonlinear Dynamical Systems This package perform data-driven identification of reduced order model based

Haller Group, Nonlinear Dynamics 27 Dec 13, 2022
Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations

Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations Trevor Ablett, Daniel (Yifan) Zhai, Jonatha

STARS Laboratory 3 Feb 01, 2022
High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.

Anakin2.0 Welcome to the Anakin GitHub. Anakin is a cross-platform, high-performance inference engine, which is originally developed by Baidu engineer

514 Dec 28, 2022
The official homepage of the COCO-Stuff dataset.

The COCO-Stuff dataset Holger Caesar, Jasper Uijlings, Vittorio Ferrari Welcome to official homepage of the COCO-Stuff [1] dataset. COCO-Stuff augment

Holger Caesar 715 Dec 31, 2022
Classical OCR DCNN reproduction based on PaddlePaddle framework.

Paddle-SVHN Classical OCR DCNN reproduction based on PaddlePaddle framework. This project reproduces Multi-digit Number Recognition from Street View I

1 Nov 12, 2021
PyTorch implementation of DeepUME: Learning the Universal Manifold Embedding for Robust Point Cloud Registration (BMVC 2021)

DeepUME: Learning the Universal Manifold Embedding for Robust Point Cloud Registration [video] [paper] [supplementary] [data] [thesis] Introduction De

Natalie Lang 10 Dec 14, 2022
Implementation of "Learning to Match Features with Seeded Graph Matching Network" ICCV2021

SGMNet Implementation PyTorch implementation of SGMNet for ICCV'21 paper "Learning to Match Features with Seeded Graph Matching Network", by Hongkai C

87 Dec 11, 2022
Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data

Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data arXiv This is the code base for weakly supervised NER. We provide a

Amazon 92 Jan 04, 2023
Image restoration with neural networks but without learning.

Warning! The optimization may not converge on some GPUs. We've personally experienced issues on Tesla V100 and P40 GPUs. When running the code, make s

Dmitry Ulyanov 7.4k Jan 01, 2023
[ICCV 2021] Learning A Single Network for Scale-Arbitrary Super-Resolution

ArbSR Pytorch implementation of "Learning A Single Network for Scale-Arbitrary Super-Resolution", ICCV 2021 [Project] [arXiv] Highlights A plug-in mod

Longguang Wang 229 Dec 30, 2022
Equipped customers with insights about their EVs Hourly energy consumption and helped predict future charging behavior using LSTM model

Equipped customers with insights about their EVs Hourly energy consumption and helped predict future charging behavior using LSTM model. Designed sample dashboard with insights and recommendation for

Yash 2 Apr 07, 2022