[ICCV 2021] Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation

Overview

EPCDepth

EPCDepth is a self-supervised monocular depth estimation model, whose supervision is coming from the other image in a stereo pair. Details are described in our paper:

Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation

Rui Peng, Ronggang Wang, Yawen Lai, Luyang Tang, Yangang Cai

ICCV 2021 (arxiv)

EPCDepth can produce the most accurate and sharpest result. In the last example, the depth of the person in the second red box should be greater than that of the road sign because the road sign obscures the person. Only our model accurately captures the cue of occlusion.

Setup

1. Recommended environment

  • PyTorch 1.1
  • Python 3.6

2. KITTI data

You can download the raw KITTI dataset (about 175GB) by running:

wget -i dataset/kitti_archives_to_download.txt -P <your kitti path>/
cd <your kitti path>
unzip "*.zip"

Then, we recommend that you converted the png images to jpeg with this command:

find <your kitti path>/ -name '*.png' | parallel 'convert -quality 92 -sampling-factor 2x2,1x1,1x1 {.}.png {.}.jpg && rm {}'

or you can skip this conversion step and by manually adjusting the suffix of the image from .jpg to .png in dataset/kitti_dataset.py. Our pre-trained model is trained in jpg, and the test performance on png will slightly decrease.

3. Prepare depth hint

Once you have downloaded the KITTI dataset as in the previous step, you need to prepare the depth hint by running:

python precompute_depth_hints.py --data_path <your kitti path>

the generated depth hint will be saved to <your kitti path>/depth_hints. You should also pay attention to the suffix of the image.

📊 Evaluation

1. Download models

Download our pretrained model and put it to <your model path>.

Pre-trained PP HxW Backbone Output Scale Abs Rel Sq Rel RMSE δ < 1.25
model18_lr 192x640 resnet18 (pt) d0 0.0998 0.722 4.475 0.888
d2 0.1 0.712 4.462 0.886
model18 320x1024 resnet18 (pt) d0 0.0925 0.671 4.297 0.899
d2 0.0920 0.655 4.268 0.898
model50 320x1024 resnet50 (pt) d0 0.0905 0.646 4.207 0.901
d2 0.0905 0.629 4.187 0.900

Note: pt refers to pre-trained on ImageNet, and the results of low resolution are a bit different from the paper.

2. KITTI evaluation

This operation will save the estimated disparity map to <your disparity save path>. To recreate the results from our paper, run:

python main.py 
    --val --data_path <your kitti path> --resume <your model path>/model18.pth.tar 
    --use_full_scale --post_process --output_scale 0 --disps_path <your disparity save path>

The shape of saved disparities in numpy data format is (N, H, W).

3. NYUv2 evaluation

We validate the generalization ability on the NYU-Depth-V2 dataset using the mode trained on the KITTI dataset. Download the testing data nyu_test.tar.gz, and unzip it to <your nyuv2 testing date path>. All evaluation codes are in the nyuv2Testing folder. Run:

python nyuv2_testing.py 
    --data_path <your nyuv2 testing date path>
    --resume <your mode path>/model50.pth.tar --post_process
    --save_dir <your nyuv2 disparity save path>

By default, only the visualization results (png format) of the predicted disparity and ground-truth will be saved to <your nyuv2 disparity save path> on NYUv2 dataset.

📦 KITTI Results

You can download our precomputed disparity predictions from the following links:

Disparity PP HxW Backbone Output Scale Abs Rel Sq Rel RMSE δ < 1.25
disps18_lr 192x640 resnet18 (pt) d0 0.0998 0.722 4.475 0.888
disps18 320x1024 resnet18 (pt) d0 0.0925 0.671 4.297 0.899
disps50 320x1024 resnet50 (pt) d0 0.0905 0.646 4.207 0.901

🖼 Visualization

To visualize the disparity map saved in the KITTI evaluation (or other disparities in numpy data format), run:

python main.py --vis --disps_path <your disparity save path>/disps50.npy

The visualized depth map will be saved to <your disparity save path>/disps_vis in png format.

Training

To train the model from scratch, run:

python main.py 
    --data_path <your kitti path> --model_dir <checkpoint save dir> 
    --logs_dir <tensorboard save dir> --pretrained --post_process 
    --use_depth_hint --use_spp_distillation --use_data_graft 
    --use_full_scale --gpu_ids 0

🔧 Suggestion

  1. The magnitude of performance improvement: Data Grafting > Full-Scale > Self-Distillation. We noticed that the performance improvement of self-distillation becomes insignificant when the model capacity is large. Therefore, it is potential to explore more accurate self-distillation label extraction methods and better self-distillation strategies in the future.
  2. According to our experimental experience, the convergence of the self-supervised monocular depth estimation model using a larger backbone network is relatively unstable. You can verify your innovations on the small backbone first, and then adjust the learning rate appropriately to train on the big backbone.
  3. We found that using a pure RSU encoder has better performance than the traditional Resnet encoder, but unfortunately there is no RSU encoder pre-trained on Imagenet. Therefore, we firmly believe that someone can pre-train the RSU encoder on Imagenet and replace the resnet encoder of this model to get huge performance improvement.

Citation

If you find our work useful in your research please consider citing our paper:

@inproceedings{epcdepth,
    title = {Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation},
    author = {Peng, Rui and Wang, Ronggang and Lai, Yawen and Tang, Luyang and Cai, Yangang},
    booktitle = {Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
    year = {2021}
}

👩‍ Acknowledgements

Our depth hint module refers to DepthHints, the NYUv2 pre-processing refers to P2Net, and the RSU block refers to U2Net.

Owner
Rui Peng
Rui Peng
Using a Seq2Seq RNN architecture via TensorFlow to predict future Bitcoin prices

Recurrent Bitcoin Network A Data Science Thesis Project About This repository contains the source code for implementing Bitcoin price prediciton using

Frizu 6 Sep 08, 2022
Streaming Anomaly Detection Framework in Python (Outlier Detection for Streaming Data)

Python Streaming Anomaly Detection (PySAD) PySAD is an open-source python framework for anomaly detection on streaming multivariate data. Documentatio

Selim Firat Yilmaz 181 Dec 18, 2022
Comp445 project - Data Communications & Computer Networks

COMP-445 Data Communications & Computer Networks Change Python version in Conda

Peng Zhao 2 Oct 03, 2022
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region. This repository provides the codebase and dataset for our work WORD: Revisiting Or

Healthcare Intelligence Laboratory 71 Jan 07, 2023
Poplar implementation of "Bundle Adjustment on a Graph Processor" (CVPR 2020)

Poplar Implementation of Bundle Adjustment using Gaussian Belief Propagation on Graphcore's IPU Implementation of CVPR 2020 paper: Bundle Adjustment o

Joe Ortiz 34 Dec 05, 2022
95.47% on CIFAR10 with PyTorch

Train CIFAR10 with PyTorch I'm playing with PyTorch on the CIFAR10 dataset. Prerequisites Python 3.6+ PyTorch 1.0+ Training # Start training with: py

5k Dec 30, 2022
DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors

DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors By Anargyros Chatzitofis, Dimitris Zarpalas, Stefanos Kollias

tofis 24 Oct 08, 2022
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022
TensorFlow Tutorial and Examples for Beginners (support TF v1 & v2)

TensorFlow Examples This tutorial was designed for easily diving into TensorFlow, through examples. For readability, it includes both notebooks and so

Aymeric Damien 42.5k Jan 08, 2023
Reinforcement learning for self-driving in a 3D simulation

SelfDrive_AI Reinforcement learning for self-driving in a 3D simulation (Created using UNITY-3D) 1. Requirements for the SelfDrive_AI Gym You need Pyt

Surajit Saikia 17 Dec 14, 2021
Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm.

REDQ source code Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm. Paper link: https://arxiv.org/abs/2101.05

109 Dec 16, 2022
Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation"

DSP Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation". Accepted by ACM Multimedia 2021. Authors

20 Oct 24, 2022
Automated Hyperparameter Optimization Competition

QQ浏览器2021AI算法大赛 - 自动超参数优化竞赛 ACM CIKM 2021 AnalyticCup 在信息流推荐业务场景中普遍存在模型或策略效果依赖于“超参数”的问题,而“超参数"的设定往往依赖人工经验调参,不仅效率低下维护成本高,而且难以实现更优效果。因此,本次赛题以超参数优化为主题,从真

20 Dec 09, 2021
Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention

cosFormer Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention Update log 2022/2/28 Add core code License This

120 Dec 15, 2022
TensorFlow implementation of "Variational Inference with Normalizing Flows"

[TensorFlow 2] Variational Inference with Normalizing Flows TensorFlow implementation of "Variational Inference with Normalizing Flows" [1] Concept Co

YeongHyeon Park 7 Jun 08, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
Differentiable Neural Computers, Sparse Access Memory and Sparse Differentiable Neural Computers, for Pytorch

Differentiable Neural Computers and family, for Pytorch Includes: Differentiable Neural Computers (DNC) Sparse Access Memory (SAM) Sparse Differentiab

ixaxaar 302 Dec 14, 2022
Code for ACL 21: Generating Query Focused Summaries from Query-Free Resources

marge This repository releases the code for Generating Query Focused Summaries from Query-Free Resources. Please cite the following paper [bib] if you

Yumo Xu 28 Nov 10, 2022
Official code for "Mean Shift for Self-Supervised Learning"

MSF Official code for "Mean Shift for Self-Supervised Learning" Requirements Python = 3.7.6 PyTorch = 1.4 torchvision = 0.5.0 faiss-gpu = 1.6.1 In

UMBC Vision 44 Nov 21, 2022
Deep generative models of 3D grids for structure-based drug discovery

What is liGAN? liGAN is a research codebase for training and evaluating deep generative models for de novo drug design based on 3D atomic density grid

Matt Ragoza 152 Jan 03, 2023