OpenStats is a library built on top of streamlit that extracts data from the Github API and shows the main KPIs

Overview

Open Stats

Discover and share the KPIs of your OpenSource project.

Release License


OpenStats is a library built on top of streamlit that extracts data from the Github API and shows the main KPIs for an OpenSource project:

  • Star evolution: What is the popularity of the repo?
  • Good First issues: Is there a focus towards the community?
  • Recurrent collaborators: How many people are involved?
  • Repository traffic: How many visits and clones do we have?

While there many other things to take into account, these metrics help us get a taste on how our project is doing in a single view.

If you'd like to see other metrics or graphics, open an issue or jump into the action!


Requirements

  • Python 3.6+
  • The main dependencies are streamlit and pandas. The configuration is managed with Levy.
  • In terms of permissions, the traffic data requires an account (token) with write to the repo.

You can install OpenStats with:

$ pip install openstats
---> 100%
Successfully installed openstats

How does it work?

OpenStats is a helper tool to build an amazing dashboard from a config file. You can check an example here:

img

To run a streamlit app, we need the following ingredients:

  • app.py file that triggers the application.
  • requirements.txt, where we will just add openstats
  • Optionally, a .streamlit/config.toml config file with the theme.

By creating an openstats.yaml file, we will pick up the necessary information, build the streamlit components and help you generate the theme file 🚀

This means that the final setup can look like this:

  • An app.py with:
    from openstats.app import run
    
    if __name__ == "__main__":  
        run()
  • A requirements.txt file with openstats.
  • An openstats.yaml file following the examples 👇

Theme

To generate the theme file based on the config, you can run openstats-theme after installing openstats.

This will create the .streamlit/config.toml file with the properties defined in our openstats.yaml.

Config

Let's take a look at how to configure openstats.yaml. You can see an example here:

title: "Dashboard title"
logo_file: "Image file to show at the sidebar"

client:  # Information about the repository
  root: "api.github.com"  # We only support GitHub API
  owner: "e.g., pmbrull"
  repo: "e.g., OpenStats"
  start_date: "Start counting stars from this date"  # Format "Aug 1 2021" (`%b %d %Y`)

style:  # To generate the streamlit theme
  primary_color: "#7147E8"  # Also used for the charts coloring
  background_color: "#F9F8FD"
  secondary_background_color: "#EEEAF8"
  text_color: "#37352F"
  font: "sans serif"

social: "
        Free markdown text! Show your badges 💪
        "

Note that the style section is only to centralise and generate the config.toml file for streamlit. The only added value here is that we will use the primary_color for the theme and charts.

If you don't want to add any image to the sidebar, just remove the YAML entry.

More on streamlit themes 👉 blog

Minimum Config

The app can run with as minimum configuration as:

title: "Levy"

client:
  root: "api.github.com"  # We only support GitHub API
  owner: "pmbrull"
  repo: "levy"
  start_date: "Aug 1 2021"  # Format `%b %d %Y`

Secrets

To show the traffic data and to have a higher API query rate, we need to identify ourselves to the GitHub API.

OpenStats only supports authenticated requests. To make things work, there are two options:

  1. Prepare an API_TOKEN environment variable before running the app
  2. Use streamlit secrets when publishing the app. The secret should also be named API_TOKEN.

The app will first try to obtain the token from the environment variables and will fall back to using streamlit secrets.

How to create an access token 👉 docs

Caching

Not all computations are lightning fast. In order to provide the best possible UX, we cache the API results using streamlit memoization features. If you want to refresh the data, there is a clear cache button available.

Publishing

You can create and manage your streamlit apps at https://share.streamlit.io/. You can follow the docs for more information.

Contributing

Take a look at our CONTRIBUTING guide.

Acknowledgements

Thanks to streamlit for an amazing library and the GitHub API for sharing all the information!

License

OpenStats is released under Apache License, Version 2.0

You might also like...
Main repository for Vispy

VisPy: interactive scientific visualization in Python Main website: http://vispy.org VisPy is a high-performance interactive 2D/3D data visualization

Main repository for Vispy

VisPy: interactive scientific visualization in Python Main website: http://vispy.org VisPy is a high-performance interactive 2D/3D data visualization

Main repository for Vispy

VisPy: interactive scientific visualization in Python Main website: http://vispy.org VisPy is a high-performance interactive 2D/3D data visualization

NorthPitch is a python soccer plotting library that sits on top of Matplotlib
NorthPitch is a python soccer plotting library that sits on top of Matplotlib

NorthPitch is a python soccer plotting library that sits on top of Matplotlib.

Wikipedia WordCloud App generate Wikipedia word cloud art created using python's streamlit, matplotlib, wikipedia and wordcloud packages
Wikipedia WordCloud App generate Wikipedia word cloud art created using python's streamlit, matplotlib, wikipedia and wordcloud packages

Wikipedia WordCloud App Wikipedia WordCloud App generate Wikipedia word cloud art created using python's streamlit, matplotlib, wikipedia and wordclou

Streamlit dashboard examples - Twitter cashtags, StockTwits, WSB, Charts, SQL Pattern Scanner

streamlit-dashboards Streamlit dashboard examples - Twitter cashtags, StockTwits, WSB, Charts, SQL Pattern Scanner Tutorial Video https://ww

🗾 Streamlit Component for rendering kepler.gl maps
🗾 Streamlit Component for rendering kepler.gl maps

streamlit-keplergl 🗾 Streamlit Component for rendering kepler.gl maps in a streamlit app. 🎈 Live Demo 🎈 Installation pip install streamlit-keplergl

This component provides a wrapper to display SHAP plots in Streamlit.
This component provides a wrapper to display SHAP plots in Streamlit.

streamlit-shap This component provides a wrapper to display SHAP plots in Streamlit.

A high-level plotting API for pandas, dask, xarray, and networkx built on HoloViews
A high-level plotting API for pandas, dask, xarray, and networkx built on HoloViews

hvPlot A high-level plotting API for the PyData ecosystem built on HoloViews. Build Status Coverage Latest dev release Latest release Docs What is it?

Releases(v0.1.9.3)
Owner
Pere Miquel Brull
Mathematician | Big Data Engineer
Pere Miquel Brull
Simple spectra visualization tool for astronomers

SpecViewer A simple visualization tool for astronomers. Dependencies Python = 3.7.4 PyQt5 = 5.15.4 pyqtgraph == 0.10.0 numpy = 1.19.4 How to use py

5 Oct 07, 2021
Create 3d loss surface visualizations, with optimizer path. Issues welcome!

MLVTK A loss surface visualization tool Simple feed-forward network trained on chess data, using elu activation and Adam optimizer Simple feed-forward

7 Dec 21, 2022
Tools for exploratory data analysis in Python

Dora Exploratory data analysis toolkit for Python. Contents Summary Setup Usage Reading Data & Configuration Cleaning Feature Selection & Extraction V

Nathan Epstein 599 Dec 25, 2022
Param: Make your Python code clearer and more reliable by declaring Parameters

Param Param is a library providing Parameters: Python attributes extended to have features such as type and range checking, dynamically generated valu

HoloViz 304 Jan 07, 2023
VDLdraw - Batch plot the log files exported from VisualDL using Matplotlib

VDLdraw Batch plot the log files exported from VisualDL using Matplotlib. At pre

Yizhou Chen 5 Sep 26, 2022
Learn Data Science with focus on adding value with the most efficient tech stack.

DataScienceWithPython Get started with Data Science with Python An engaging journey to become a Data Scientist with Python TL;DR Download all Jupyter

Learn Python with Rune 110 Dec 22, 2022
A Python package for caclulations and visualizations in geological sciences.

geo_calcs A Python package for caclulations and visualizations in geological sciences. Free software: MIT license Documentation: https://geo-calcs.rea

Drew Heasman 1 Jul 12, 2022
Compute and visualise incidence (reworking of the original incidence package)

incidence2 incidence2 is an R package that implements functions and classes to compute, handle and visualise incidence from linelist data. It refocuss

15 Nov 22, 2022
mysql relation charts

sqlcharts 自动生成数据库关联关系图 复制settings.py.example 重命名为settings.py 将数据库配置信息填入settings.DATABASE,目前支持mysql和postgresql 执行 python build.py -b,-b是读取数据库表结构,如果只更新匹

6 Aug 22, 2022
Minimal Ethereum fee data viewer for the terminal, contained in a single python script.

Minimal Ethereum fee data viewer for the terminal, contained in a single python script. Connects to your node and displays some metrics in real-time.

48 Dec 05, 2022
Resources for teaching & learning practical data visualization with python.

Practical Data Visualization with Python Overview All views expressed on this site are my own and do not represent the opinions of any entity with whi

Paul Jeffries 98 Sep 24, 2022
Realtime Viewer Mandelbrot set with Python and Taichi (cpu, opengl, cuda, vulkan, metal)

Mandelbrot-set-Realtime-Viewer- Realtime Viewer Mandelbrot set with Python and Taichi (cpu, opengl, cuda, vulkan, metal) Control: "WASD" - movement, "

22 Oct 31, 2022
A GUI for Pandas DataFrames

PandasGUI A GUI for analyzing Pandas DataFrames. Demo Installation Install latest release from PyPi: pip install pandasgui Install directly from Githu

Adam 2.8k Jan 03, 2023
Create HTML profiling reports from pandas DataFrame objects

Pandas Profiling Documentation | Slack | Stack Overflow Generates profile reports from a pandas DataFrame. The pandas df.describe() function is great

10k Jan 01, 2023
Statistical data visualization using matplotlib

seaborn: statistical data visualization Seaborn is a Python visualization library based on matplotlib. It provides a high-level interface for drawing

Michael Waskom 10.2k Dec 30, 2022
kyle's vision of how datadog's python client should look

kyle's datadog python vision/proposal not for production use See examples/comprehensive.py for a mostly working example of the proposed API. 📈 🐶 ❤️

Kyle Verhoog 2 Nov 21, 2021
FURY - A software library for scientific visualization in Python

Free Unified Rendering in Python A software library for scientific visualization in Python. General Information • Key Features • Installation • How to

169 Dec 21, 2022
A Simple Flask-Plotly Example for NTU 110-1 DSSI Class

A Simple Flask-Plotly Example for NTU 110-1 DSSI Class Live Demo Prerequisites We will use Flask and Ploty to build a Flask application. If you haven'

Ting Ni Wu 1 Dec 11, 2021
CONTRIBUTIONS ONLY: Voluptuous, despite the name, is a Python data validation library.

CONTRIBUTIONS ONLY What does this mean? I do not have time to fix issues myself. The only way fixes or new features will be added is by people submitt

Alec Thomas 1.8k Dec 31, 2022
Plotting library for IPython/Jupyter notebooks

bqplot 2-D plotting library for Project Jupyter Introduction bqplot is a 2-D visualization system for Jupyter, based on the constructs of the Grammar

3.4k Dec 29, 2022