A script and GUI for controlling stepper motors from an arduino

Overview

Controlling-Stepper-Motors-with-Arduino-NEMA-

A python script and GUI for controlling 3 stepper motors in 3 directions (X, Y, Z) from an arduino (I was using nema 23 but it should work for others in general, maybe with some small changes).

I used an Arduino uno with usb connection, using pyfirmata to control it from python, the arduino pins (details below) were fed into 3 DM542 microstep drivers (powered with 24 V power supplies), and the outputs from the drivers were connected to the NEMA23 stepper motors through 3x custom (5-pin) XLR cables (using 4 of the connections).

For X, Y and Z directions I set up the pins as follows (but you can change it easily in the code) X direction pin - 3 pulse pin - 2 enable pin - 12 Y direction pin - 5 pulse pin - 4 enable pin - 11 Z direction pin - 7 pulse pin - 6 enable pin - 10

brief explanation of the pin type functions: direction - high (5V) or low (0V) depending on whether you want to drive forwards or backwards pulse - pulses between high and low, the driver will then interpret this (depending on the driver settings) as e.g. 400 pulses need to rotate the stepper drive one full rotation. So if this pin goes high to low 400 times your driver will rotate 360 degrees in this example. enable pin - when high this will block the driver from taking action when recieving pulses. In the end I didn't experience much push back so I left this low all the time but you can edit to set it high and then only low when the move loop is activated if you experience unwanted movement.

The GUI is quite basic, made using tkinter. I recommend first time you run it putting x,y and z in your e.g. 0 positions and saving those positions as 0. Note #1 that they can go to negative values. Note #2 that z is set up in cm and running backwards (ie higher up is a lower value) because this is how my physical z drive was set up, but changing that should be fairly straight forward! Here you can either set a position for x/y/z (or all 3) and start the system moving there. The positions text will update once they arrive in position. You can also set a jog size and then move either x y or z in those steps. There's a stop button in case of emergencies. If you hit stop the positions text will update to the position they reached when you hit stop. There's also the buttons 'set safe place' - the system will the current position, and if you later hit 'go to safe place' it will move there. Note that the system will always move first in x, then y, and last z. If you want to change the order just switch the order x y and z are checked and acted on at line 255 in the def movebutton. You can also set the speed in the GUI between fast, medium and slow, this just changes the sleep time between pulses sent to the drivers. You can change them easily. If fast is still not fast enough then decrease you drivers pulses per revolution settings if possible.

There are a few places in the code where you will need to set things specific to your setup (the COM port of the arduino, the arduino pins used, driver and thread settings, and the file directory for storing positions between uses if you want this). Elaborating on that last point, line 76, set a path to a folder you created called XYZ log. This will save the current XYZ positions (in a text file) if you close the GUI and load the most recent when you open the GUI.

I usually ran the script from a batch file on the desktop so that noone would accidentally edit the code (.bat file example included too). For this to work for you change the first "" contents to your python path and the second to the script path.

I'll upload some photos of the setup and a wiring diagram. I hope this is useful for someone else that is sick of trying to get labview to do what they want. Happy stepping!

Owner
Pip
PhD in physics from the University of Manchester, using python to make life easier and for fun projects.
Pip
Tools and documentation to aid in modifying the ADI ADALM Pluto firmware

Pluto firmware modifications This repository contains tools and documentation to aid in modifying the ADI ADALM Pluto firmware. Extraction of the Plut

Daniel Estévez 28 Dec 21, 2022
Home Assistant component to handle key atom

KeyAtome Home Assistant component to handle key atom, a Linky-compatible device made by Total/Direct-Energie. Installation Either use HACS (default),

18 Dec 21, 2022
Python script for printing to the Hanshow price-tag

This repository contains Python code for talking to the ATC_TLSR_Paper open-source firmware for the Hanshow e-paper pricetag. Installation # Clone the

12 Oct 06, 2022
A versatile program that uses the raspberry pi camera and provides it as a service

PiCameleon Is a daemon program meant to provide the RaspberryPi Camera as a service while running according to a configuration.

André Esser 52 Oct 16, 2022
Custom component for interacting with Octopus Energy

Home Assistant Octopus Energy ** WARNING: This component is currently a work in progress ** Custom component built from the ground up to bring your Oc

David Kendall 116 Jan 02, 2023
A Fear and Greed index visualiser for Bitcoin on a SSD1351 OLED Screen

We're Doomed - A Bitcoin Fear and Greed index OLED visualiser Doom is a first-person-shooter from the 1990s. The health status monitor was one of the

VEEB 19 Dec 29, 2022
CircuitPython Driver for Adafruit 24LC32 I2C EEPROM Breakout 32Kbit / 4 KB

Introduction CircuitPython driver for Adafruit 24LC32 I2C EEPROM Breakout Dependencies This driver depends on: Adafruit CircuitPython Bus Device Regis

foamyguy 0 Dec 20, 2021
Windhager myComfort custom component for Home Assistant

Windhager myComfort custom component for Home Assistant

5 Apr 27, 2022
DOS-like OS for RP2040 basic microcontroller boards

Micropython DOS-like OS for RP2040 microcontroller boards. Check out the demo video at https://www.youtube.com/watch?v=Az_oiq8GE4Y To start the OS typ

RetiredWizard 58 Dec 27, 2022
A battery pack simulation tool that uses the PyBaMM framework

Overview of liionpack liionpack takes a 1D PyBaMM model and makes it into a pack. You can either specify the configuration e.g. 16 cells in parallel a

PyBaMM Team 40 Jan 05, 2023
A Macropad using the Raspberry Pi Pico, programmed with CircuitPython.

A Macropad using the Raspberry Pi Pico, programmed with CircuitPython.

15 Oct 14, 2022
🏡 My Home Assistant Configs. Be sure to 🌟 my repo to follow the updates!

Home Assistant Configuration Here's my Home Assistant configuration. I have installed HA on a Lenovo ThinkCentre M93P Tiny with an Intel Dual-Core i5-

iLyas Bakouch 25 Dec 30, 2022
Tool to create 3D printable terrain with integrated path/road part files (Single material 3d printer)

BACKGROUND This has been an ongoing project of mine for a few months now. I run trails a lot and original the goal was to create a function to combine

9 Apr 26, 2022
Modi2-firmware-updater - MODI+ Firmware Updater With Python

MODI+ Firmware Updater 실행 준비 python3(파이썬3.9 혹은 그 이상의 버전)를 컴퓨터에 설치 python3 -m pip

LUXROBO 1 Feb 04, 2022
A custom mechanical keyboard inspired by the CFTKB Mysterium

Env-KB A custom mechanical keyboard inspired by the CFTKB Mysterium Build Guide and Parts List What is to do? Right now for the first 5 PCBs I have, i

EnviousData 203 Jan 04, 2023
A blender 2.9x addon for managing camera settings

TMG-Camera-Tools A blender 2.9x addon for managing camera settings Tutorial showcasing current features

Mainman002 12 Apr 16, 2022
Open source home automation that puts local control and privacy first.

Home Assistant Open source home automation that puts local control and privacy first. Powered by a worldwide community of tinkerers and DIY enthusiast

Home Assistant 57k Jan 01, 2023
PlatformIO development platform for GSM modules

PlatformIO development platform for GSM modules Supported Modules Quectel M66 OpenCPU Arduino - TODO other - in progress... Supported Boards Comet M66

Georgi Angelov 5 Aug 06, 2022
hardware design of the 250mm drone

hardware design of the 250mm drone

ZJU FAST Lab 645 Dec 25, 2022
emhass: Energy Management for Home Assistant

emhass EMHASS: Energy Management for Home Assistant Context This module was conceived as an energy management optimization tool for residential electr

David 70 Dec 24, 2022