Active learning for Mask R-CNN in Detectron2

Related tags

Deep Learningmaskal
Overview

MaskAL - Active learning for Mask R-CNN in Detectron2

maskAL_framework

Summary

MaskAL is an active learning framework that automatically selects the most-informative images for training Mask R-CNN. By using MaskAL, it is possible to reduce the number of image annotations, without negatively affecting the performance of Mask R-CNN. Generally speaking, MaskAL involves the following steps:

  1. Train Mask R-CNN on a small initial subset of a bigger dataset
  2. Use the trained Mask R-CNN algorithm to make predictions on the unlabelled images of the remaining dataset
  3. Select the most-informative images with a sampling algorithm
  4. Annotate the most-informative images, and then retrain Mask R-CNN on the most informative-images
  5. Repeat step 2-4 for a specified number of sampling iterations

The figure below shows the performance improvement of MaskAL on our dataset. By using MaskAL, the performance of Mask R-CNN improved more quickly and therefore 1400 annotations could be saved (see the black dashed line):

maskAL_graph

Installation

See INSTALL.md

Data preparation and training

Split the dataset in a training set, validation set and a test set. It is not required to annotate every image in the training set, because MaskAL will select the most-informative images automatically.

  1. From the training set, a smaller initial dataset is randomly sampled (the dataset size can be specified in the maskAL.yaml file). The images that do not have an annotation are placed in the annotate subfolder inside the image folder. You first need to annotate these images with LabelMe (json), V7-Darwin (json), Supervisely (json) or CVAT (xml) (when using CVAT, export the annotations to LabelMe 3.0 format). Refer to our annotation procedure: ANNOTATION.md
  2. Step 1 is repeated for the validation set and the test set (the file locations can be specified in the maskAL.yaml file).
  3. After the first training iteration of Mask R-CNN, the sampling algorithm selects the most-informative images (its size can be specified in the maskAL.yaml file).
  4. The most-informative images that don't have an annotation, are placed in the annotate subfolder. Annotate these images with LabelMe (json), V7-Darwin (json), Supervisely (json) or CVAT (xml) (when using CVAT, export the annotations to LabelMe 3.0 format).
  5. OPTIONAL: it is possible to use the trained Mask R-CNN model to auto-annotate the unlabelled images to further reduce annotation time. Activate auto_annotate in the maskAL.yaml file, and specify the export_format (currently supported formats: 'labelme', 'cvat', 'darwin', 'supervisely').
  6. Step 3-5 are repeated for several training iterations. The number of iterations (loops) can be specified in the maskAL.yaml file.

Please note that MaskAL does not work with the default COCO json-files of detectron2. These json-files contain all annotations that are completed before the training starts. Because MaskAL involves an iterative train and annotation procedure, the default COCO json-files lack the desired format.

How to use MaskAL

Open a terminal (Ctrl+Alt+T):

(base) [email protected]:~$ cd maskal
(base) [email protected]:~/maskal$ conda activate maskAL
(maskAL) [email protected]:~/maskal$ python maskAL.py --config maskAL.yaml

Change the following settings in the maskAL.yaml file:
Setting Description
weightsroot The file directory where the weight-files are stored
resultsroot The file directory where the result-files are stored
dataroot The root directory where all image-files are stored
use_initial_train_dir Set this to True when you want to start the active-learning from an initial training dataset. When False, the initial dataset of size initial_datasize is randomly sampled from the traindir
initial_train_dir When use_initial_train_dir is activated: the file directory where the initial training images and annotations are stored
traindir The file directory where the training images and annotations are stored
valdir The file directory where the validation images and annotations are stored
testdir The file directory where the test images and annotations are stored
network_config The Mask R-CNN configuration-file (.yaml) file (see the folder './configs')
pretrained_weights The pretrained weights to start the active-learning. Either specify the network_config (.yaml) or a custom weights-file (.pth or .pkl)
cuda_visible_devices The identifiers of the CUDA device(s) you want to use for training and sampling (in string format, for example: '0,1')
classes The names of the classes in the image annotations
learning_rate The learning-rate to train Mask R-CNN (default value: 0.01)
confidence_threshold Confidence-threshold for the image analysis with Mask R-CNN (default value: 0.5)
nms_threshold Non-maximum suppression threshold for the image analysis with Mask R-CNN (default value: 0.3)
initial_datasize The size of the initial dataset to start the active learning (when use_initial_train_dir is False)
pool_size The number of most-informative images that are selected from the traindir
loops The number of sampling iterations
auto_annotate Set this to True when you want to auto-annotate the unlabelled images
export_format When auto_annotate is activated: specify the export-format of the annotations (currently supported formats: 'labelme', 'cvat', 'darwin', 'supervisely')
supervisely_meta_json When supervisely auto_annotate is activated: specify the file location of the meta.json for supervisely export

Description of the other settings in the maskAL.yaml file: MISC_SETTINGS.md

Please refer to the folder active_learning/config for more setting-files.

Other software scripts

Use a trained Mask R-CNN algorithm to auto-annotate unlabelled images: auto_annotate.py

Argument Description
--img_dir The file directory where the unlabelled images are stored
--network_config Configuration of the backbone of the network
--classes The names of the classes of the annotated instances
--conf_thres Confidence threshold of the CNN to do the image analysis
--nms_thres Non-maximum suppression threshold of the CNN to do the image analysis
--weights_file Weight-file (.pth) of the trained CNN
--export_format Specifiy the export-format of the annotations (currently supported formats: 'labelme', 'cvat', 'darwin', 'supervisely')
--supervisely_meta_json The file location of the meta.json for supervisely export

Example syntax (auto_annotate.py):

python auto_annotate.py --img_dir datasets/train --network_config COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml --classes healthy damaged matured cateye headrot --conf_thres 0.5 --nms_thres 0.2 --weights_file weights/broccoli/model_final.pth --export_format supervisely --supervisely_meta_json datasets/meta.json

Troubleshooting

See TROUBLESHOOTING.md

Citation

See our research article for more information or cross-referencing:

@misc{blok2021active,
      title={Active learning with MaskAL reduces annotation effort for training Mask R-CNN}, 
      author={Pieter M. Blok and Gert Kootstra and Hakim Elchaoui Elghor and Boubacar Diallo and Frits K. van Evert and Eldert J. van Henten},
      year={2021},
      eprint={2112.06586},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url = {https://arxiv.org/abs/2112.06586},
}

License

Our software was forked from Detectron2 (https://github.com/facebookresearch/detectron2). As such, the software will be released under the Apache 2.0 license.

Acknowledgements

The uncertainty calculation methods were inspired by the research of Doug Morrison:
https://nikosuenderhauf.github.io/roboticvisionchallenges/assets/papers/CVPR19/rvc_4.pdf

Two software methods were inspired by the work of RovelMan:
https://github.com/RovelMan/active-learning-framework

MaskAL uses the Bayesian Active Learning (BaaL) software:
https://github.com/ElementAI/baal

Contact

MaskAL is developed and maintained by Pieter Blok.

[CVPR'21] Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration

Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration This repository contains the implementation of our paper Locally Aware Pi

sfwang 70 Dec 19, 2022
Implementation of Shape and Electrostatic similarity metric in deepFMPO.

DeepFMPO v3D Code accompanying the paper "On the value of using 3D-shape and electrostatic similarities in deep generative methods". The paper can be

34 Nov 28, 2022
Codes of paper "Unseen Object Amodal Instance Segmentation via Hierarchical Occlusion Modeling"

Unseen Object Amodal Instance Segmentation (UOAIS) Seunghyeok Back, Joosoon Lee, Taewon Kim, Sangjun Noh, Raeyoung Kang, Seongho Bak, Kyoobin Lee This

GIST-AILAB 92 Dec 13, 2022
Embeddinghub is a database built for machine learning embeddings.

Embeddinghub is a database built for machine learning embeddings.

Featureform 1.2k Jan 01, 2023
A simple Neural Network that predicts the label for a series of handwritten digits

Neural_Network A simple Neural Network that predicts the label for a series of handwritten numbers This program tries to predict the label (1,2,3 etc.

Ty 1 Dec 18, 2021
NaturalProofs: Mathematical Theorem Proving in Natural Language

NaturalProofs: Mathematical Theorem Proving in Natural Language NaturalProofs: Mathematical Theorem Proving in Natural Language Sean Welleck, Jiacheng

Sean Welleck 83 Jan 05, 2023
CodeContests is a competitive programming dataset for machine-learning

CodeContests CodeContests is a competitive programming dataset for machine-learning. This dataset was used when training AlphaCode. It consists of pro

DeepMind 1.6k Jan 08, 2023
Code for Learning to Segment The Tail (LST)

Learning to Segment the Tail [arXiv] In this repository, we release code for Learning to Segment The Tail (LST). The code is directly modified from th

47 Nov 07, 2022
Focal Loss for Dense Rotation Object Detection

Convert ResNets weights from GluonCV to Tensorflow Abstract GluonCV released some new resnet pre-training weights and designed some new resnets (such

17 Nov 24, 2021
Python package for Bayesian Machine Learning with scikit-learn API

Python package for Bayesian Machine Learning with scikit-learn API Installing & Upgrading package pip install https://github.com/AmazaspShumik/sklearn

Amazasp Shaumyan 482 Jan 04, 2023
Weakly supervised medical named entity classification

Trove Trove is a research framework for building weakly supervised (bio)medical named entity recognition (NER) and other entity attribute classifiers

60 Nov 18, 2022
Hybrid Neural Fusion for Full-frame Video Stabilization

FuSta: Hybrid Neural Fusion for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 430 Jan 04, 2023
[ICCV 2021] Counterfactual Attention Learning for Fine-Grained Visual Categorization and Re-identification

Counterfactual Attention Learning Created by Yongming Rao*, Guangyi Chen*, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for ICCV

Yongming Rao 90 Dec 31, 2022
Trading Gym is an open source project for the development of reinforcement learning algorithms in the context of trading.

Trading Gym Trading Gym is an open-source project for the development of reinforcement learning algorithms in the context of trading. It is currently

Dimitry Foures 535 Nov 15, 2022
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
A 1.3B text-to-image generation model trained on 14 million image-text pairs

minDALL-E on Conceptual Captions minDALL-E, named after minGPT, is a 1.3B text-to-image generation model trained on 14 million image-text pairs for no

Kakao Brain 604 Dec 14, 2022
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Phil Wang 12.6k Jan 09, 2023
Global-Local Attention for Emotion Recognition

Global-Local Attention for Emotion Recognition Requirements Python 3 Install tensorflow (or tensorflow-gpu) = 2.0.0 Install some other packages pip i

Minh Nhat Le 15 Apr 21, 2022
VoxHRNet - Whole Brain Segmentation with Full Volume Neural Network

VoxHRNet This is the official implementation of the following paper: Whole Brain Segmentation with Full Volume Neural Network Yeshu Li, Jonathan Cui,

Microsoft 12 Nov 24, 2022
This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

Hansheng Jiang 6 Nov 18, 2022