PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning.

Overview

neural-combinatorial-rl-pytorch

PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning.

I have implemented the basic RL pretraining model with greedy decoding from the paper. An implementation of the supervised learning baseline model is available here. Instead of a critic network, I got my results below on TSP from using an exponential moving average critic. The critic network is simply commented out in my code right now. From correspondence with a few others, it was determined that the exponential moving average critic significantly helped improve results.

My implementation uses a stochastic decoding policy in the pointer network, realized via PyTorch's torch.multinomial(), during training, and beam search (not yet finished, only supports 1 beam a.k.a. greedy) for decoding when testing the model.

Currently, there is support for a sorting task and the planar symmetric Euclidean TSP.

See main.sh for an example of how to run the code.

Use the --load_path $LOAD_PATH and --is_train False flags to load a saved model.

To load a saved model and view the pointer network's attention layer, also use the --plot_attention True flag.

Please, feel free to notify me if you encounter any errors, or if you'd like to submit a pull request to improve this implementation.

Adding other tasks

This implementation can be extended to support other combinatorial optimization problems. See sorting_task.py and tsp_task.py for examples on how to add. The key thing is to provide a dataset class and a reward function that takes in a sample solution, selected by the pointer network from the input, and returns a scalar reward. For the sorting task, the agent received a reward proportional to the length of the longest strictly increasing subsequence in the decoded output (e.g., [1, 3, 5, 2, 4] -> 3/5 = 0.6).

Dependencies

  • Python=3.6 (should be OK with v >= 3.4)
  • PyTorch=0.2 and 0.3
  • tqdm
  • matplotlib
  • tensorboard_logger

PyTorch 0.4 compatibility is available on branch pytorch-0.4.

TSP Results

Results for 1 random seed over 50 epochs (each epoch is 10,000 batches of size 128). After each epoch, I validated performance on 1000 held out graphs. I used the same hyperparameters from the paper, as can be seen in main.sh. The dashed line shows the value indicated in Table 2 of Bello, et. al for comparison. The log scale x axis for the training reward is used to show how the tour length drops early on.

TSP 20 Train TSP 20 Val TSP 50 Train TSP 50 Val

Sort Results

I trained a model on sort10 for 4 epochs of 1,000,000 randomly generated samples. I tested it on a dataset of size 10,000. Then, I tested the same model on sort15 and sort20 to test the generalization capabilities.

Test results on 10,000 samples (A reward of 1.0 means the network perfectly sorted the input):

task average reward variance
sort10 0.9966 0.0005
sort15 0.7484 0.0177
sort20 0.5586 0.0060

Example prediction on sort10:

input: [4, 7, 5, 0, 3, 2, 6, 8, 9, 1]
output: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Attention visualization

Plot the pointer network's attention layer with the argument --plot_attention True

TODO

  • Add RL pretraining-Sampling
  • Add RL pretraining-Active Search
  • Active Search
  • Asynchronous training a la A3C
  • Refactor USE_CUDA variable
  • Finish implementing beam search decoding to support > 1 beam
  • Add support for variable length inputs

Acknowledgements

Special thanks to the repos devsisters/neural-combinatorial-rl-tensorflow and MaximumEntropy/Seq2Seq-PyTorch for getting me started, and @ricgama for figuring out that weird bug with clone()

Owner
Patrick E.
Machine Learning PhD Candidate at Univ. of Florida. Deep generative models | object-centric representation learning | RL | transportation
Patrick E.
Generating Radiology Reports via Memory-driven Transformer

R2Gen This is the implementation of Generating Radiology Reports via Memory-driven Transformer at EMNLP-2020. Citations If you use or extend our work,

CUHK-SZ NLP Group 101 Dec 13, 2022
Library for time-series-forecasting-as-a-service.

TIMEX TIMEX (referred in code as timexseries) is a framework for time-series-forecasting-as-a-service. Its main goal is to provide a simple and generi

Alessandro Falcetta 8 Jan 06, 2023
Material for my PyConDE & PyData Berlin 2022 Talk "5 Steps to Speed Up Your Data-Analysis on a Single Core"

5 Steps to Speed Up Your Data-Analysis on a Single Core Material for my talk at the PyConDE & PyData Berlin 2022 Description Your data analysis pipeli

Jonathan Striebel 9 Dec 12, 2022
Playing around with FastAPI and streamlit to create a YoloV5 object detector

FastAPI-Streamlit-based-YoloV5-detector Playing around with FastAPI and streamlit to create a YoloV5 object detector It turns out that a User Interfac

2 Jan 20, 2022
CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Selection

CIFS This repository provides codes for CIFS (ICML 2021). CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Sel

Hanshu YAN 19 Nov 12, 2022
Official implementation of particle-based models (GNS and DPI-Net) on the Physion dataset.

Physion: Evaluating Physical Prediction from Vision in Humans and Machines [paper] Daniel M. Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiao-Y

Hsiao-Yu Fish Tung 18 Dec 19, 2022
Definition of a business problem according to Wilson Lower Bound Score and Time Based Average Rating

Wilson Lower Bound Score, Time Based Rating Average In this study I tried to calculate the product rating and sorting reviews more accurately. I have

3 Sep 30, 2021
Food recognition model using convolutional neural network & computer vision

Food recognition model using convolutional neural network & computer vision. The goal is to match or beat the DeepFood Research Paper

Hemanth Chandran 1 Jan 13, 2022
Face-Recognition-Attendence-System - This face recognition Attendence system using Python

Face-Recognition-Attendence-System I have developed this face recognition Attend

Riya Gupta 4 May 10, 2022
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models

Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex

Ryuichi Yamamoto 1.8k Jan 08, 2023
Pytorch implementation of SimSiam Architecture

SimSiam-pytorch A simple pytorch implementation of Exploring Simple Siamese Representation Learning which is developed by Facebook AI Research (FAIR)

Saeed Shurrab 1 Oct 20, 2021
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
Detecting Potentially Harmful and Protective Suicide-related Content on Twitter

TwitterSuicideML Scripts for reproducing the Machine Learning analysis of the paper: Detecting Potentially Harmful and Protective Suicide-related Cont

3 Oct 17, 2022
PyTorch code for: Learning to Generate Grounded Visual Captions without Localization Supervision

Learning to Generate Grounded Visual Captions without Localization Supervision This is the PyTorch implementation of our paper: Learning to Generate G

Chih-Yao Ma 41 Nov 17, 2022
PyTorch code for JEREX: Joint Entity-Level Relation Extractor

JEREX: "Joint Entity-Level Relation Extractor" PyTorch code for JEREX: "Joint Entity-Level Relation Extractor". For a description of the model and exp

LAVIS - NLP Working Group 50 Dec 01, 2022
Aalto-cs-msc-theses - Listing of M.Sc. Theses of the Department of Computer Science at Aalto University

Aalto-CS-MSc-Theses Listing of M.Sc. Theses of the Department of Computer Scienc

Jorma Laaksonen 3 Jan 27, 2022
Small little script to scrape, parse and check for active tor nodes. Can be used as proxies.

TorScrape TorScrape is a small but useful script made in python that scrapes a website for active tor nodes, parse the html and then save the nodes in

5 Dec 04, 2022
Coded illumination for improved lensless imaging

CodedCam Coded Illumination for Improved Lensless Imaging Paper | Supplementary results | Data and Code are available. Coded illumination for improved

Computational Sensing and Information Processing Lab 1 Nov 29, 2021
Official tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”

Tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”.

3.7k Dec 31, 2022
⚾🤖⚾ Automatic baseball pitching overlay in realtime

⚾ Automatically overlaying pitch motion and trajectory with machine learning! This project takes your baseball pitching clips and automatically genera

Tony Chou 240 Dec 05, 2022