Official code for "Towards An End-to-End Framework for Flow-Guided Video Inpainting" (CVPR2022)

Overview

E2FGVI (CVPR 2022)

PWC PWC

Python 3.7 pytorch 1.6.0

English | 简体中文

This repository contains the official implementation of the following paper:

Towards An End-to-End Framework for Flow-Guided Video Inpainting
Zhen Li#, Cheng-Ze Lu#, Jianhua Qin, Chun-Le Guo*, Ming-Ming Cheng
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022

[Paper] [Demo Video (Youtube)] [演示视频 (B站)] [Project Page (TBD)] [Poster (TBD)]

You can try our colab demo here: Open In Colab

News

  • 2022.05.15: We release E2FGVI-HQ, which can handle videos with arbitrary resolution. This model could generalize well to much higher resolutions, while it only used 432x240 videos for training. Besides, it performs better than our original model on both PSNR and SSIM metrics. 🔗 Download links: [Google Drive] [Baidu Disk] 🎥 Demo video: [Youtube] [B站]

  • 2022.04.06: Our code is publicly available.

Demo

teaser

More examples (click for details):

Coco (click me)
Tennis
Space
Motocross

Overview

overall_structure

🚀 Highlights:

  • SOTA performance: The proposed E2FGVI achieves significant improvements on all quantitative metrics in comparison with SOTA methods.
  • Highly effiency: Our method processes 432 × 240 videos at 0.12 seconds per frame on a Titan XP GPU, which is nearly 15× faster than previous flow-based methods. Besides, our method has the lowest FLOPs among all compared SOTA methods.

Work in Progress

  • Update website page
  • Hugging Face demo
  • Efficient inference

Dependencies and Installation

  1. Clone Repo

    git clone https://github.com/MCG-NKU/E2FGVI.git
  2. Create Conda Environment and Install Dependencies

    conda env create -f environment.yml
    conda activate e2fgvi
    • Python >= 3.7
    • PyTorch >= 1.5
    • CUDA >= 9.2
    • mmcv-full (following the pipeline to install)

    If the environment.yml file does not work for you, please follow this issue to solve the problem.

Get Started

Prepare pretrained models

Before performing the following steps, please download our pretrained model first.

Model 🔗 Download Links Support Arbitrary Resolution ? PSNR / SSIM / VFID (DAVIS)
E2FGVI [Google Drive] [Baidu Disk] 33.01 / 0.9721 / 0.116
E2FGVI-HQ [Google Drive] [Baidu Disk] 33.06 / 0.9722 / 0.117

Then, unzip the file and place the models to release_model directory.

The directory structure will be arranged as:

release_model
   |- E2FGVI-CVPR22.pth
   |- E2FGVI-HQ-CVPR22.pth
   |- i3d_rgb_imagenet.pt (for evaluating VFID metric)
   |- README.md

Quick test

We provide two examples in the examples directory.

Run the following command to enjoy them:

# The first example (using split video frames)
python test.py --model e2fgvi (or e2fgvi_hq) --video examples/tennis --mask examples/tennis_mask  --ckpt release_model/E2FGVI-CVPR22.pth (or release_model/E2FGVI-HQ-CVPR22.pth)
# The second example (using mp4 format video)
python test.py --model e2fgvi (or e2fgvi_hq) --video examples/schoolgirls.mp4 --mask examples/schoolgirls_mask  --ckpt release_model/E2FGVI-CVPR22.pth (or release_model/E2FGVI-HQ-CVPR22.pth)

The inpainting video will be saved in the results directory. Please prepare your own mp4 video (or split frames) and frame-wise masks if you want to test more cases.

Note: E2FGVI always rescales the input video to a fixed resolution (432x240), while E2FGVI-HQ does not change the resolution of the input video. If you want to custom the output resolution, please use the --set_size flag and set the values of --width and --height.

Example:

# Using this command to output a 720p video
python test.py --model e2fgvi_hq --video <video_path> --mask <mask_path>  --ckpt release_model/E2FGVI-HQ-CVPR22.pth --set_size --width 1280 --height 720

Prepare dataset for training and evaluation

Dataset YouTube-VOS DAVIS
Details For training (3,471) and evaluation (508) For evaluation (50 in 90)
Images [Official Link] (Download train and test all frames) [Official Link] (2017, 480p, TrainVal)
Masks [Google Drive] [Baidu Disk] (For reproducing paper results)

The training and test split files are provided in datasets/<dataset_name>.

For each dataset, you should place JPEGImages to datasets/<dataset_name>.

Then, run sh datasets/zip_dir.sh (Note: please edit the folder path accordingly) for compressing each video in datasets/<dataset_name>/JPEGImages.

Unzip downloaded mask files to datasets.

The datasets directory structure will be arranged as: (Note: please check it carefully)

datasets
   |- davis
      |- JPEGImages
         |- <video_name>.zip
         |- <video_name>.zip
      |- test_masks
         |- <video_name>
            |- 00000.png
            |- 00001.png   
      |- train.json
      |- test.json
   |- youtube-vos
      |- JPEGImages
         |- <video_id>.zip
         |- <video_id>.zip
      |- test_masks
         |- <video_id>
            |- 00000.png
            |- 00001.png
      |- train.json
      |- test.json   
   |- zip_file.sh

Evaluation

Run one of the following commands for evaluation:

 # For evaluating E2FGVI model
 python evaluate.py --model e2fgvi --dataset <dataset_name> --data_root datasets/ --ckpt release_model/E2FGVI-CVPR22.pth
 # For evaluating E2FGVI-HQ model
 python evaluate.py --model e2fgvi_hq --dataset <dataset_name> --data_root datasets/ --ckpt release_model/E2FGVI-HQ-CVPR22.pth

You will get scores as paper reported if you evaluate E2FGVI. The scores of E2FGVI-HQ can be found in [Prepare pretrained models].

The scores will also be saved in the results/<model_name>_<dataset_name> directory.

Please --save_results for further evaluating temporal warping error.

Training

Our training configures are provided in train_e2fgvi.json (for E2FGVI) and train_e2fgvi_hq.json (for E2FGVI-HQ).

Run one of the following commands for training:

 # For training E2FGVI
 python train.py -c configs/train_e2fgvi.json
 # For training E2FGVI-HQ
 python train.py -c configs/train_e2fgvi_hq.json

You could run the same command if you want to resume your training.

The training loss can be monitored by running:

tensorboard --logdir release_model                                                   

You could follow this pipeline to evaluate your model.

Results

Quantitative results

quantitative_results

Citation

If you find our repo useful for your research, please consider citing our paper:

@inproceedings{liCvpr22vInpainting,
   title={Towards An End-to-End Framework for Flow-Guided Video Inpainting},
   author={Li, Zhen and Lu, Cheng-Ze and Qin, Jianhua and Guo, Chun-Le and Cheng, Ming-Ming},
   booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
   year={2022}
}

Contact

If you have any question, please feel free to contact us via zhenli1031ATgmail.com or czlu919AToutlook.com.

License

Licensed under a Creative Commons Attribution-NonCommercial 4.0 International for Non-commercial use only. Any commercial use should get formal permission first.

Acknowledgement

This repository is maintained by Zhen Li and Cheng-Ze Lu.

This code is based on STTN, FuseFormer, Focal-Transformer, and MMEditing.

Owner
Media Computing Group @ Nankai University
Media Computing Group at Nankai University, led by Prof. Ming-Ming Cheng.
Media Computing Group @ Nankai University
2021搜狐校园文本匹配算法大赛 分比我们低的都是帅哥队

sohu_text_matching 2021搜狐校园文本匹配算法大赛Top2:分比我们低的都是帅哥队 本repo包含了本次大赛决赛环节提交的代码文件及答辩PPT,提交的模型文件可在百度网盘获取(链接:https://pan.baidu.com/s/1T9FtwiGFZhuC8qqwXKZSNA ,

hflserdaniel 43 Oct 01, 2022
Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Ng Kam Woh 71 Dec 22, 2022
Perfect implement. Model shared. x0.5 (Top1:60.646) and 1.0x (Top1:69.402).

Shufflenet-v2-Pytorch Introduction This is a Pytorch implementation of faceplusplus's ShuffleNet-v2. For details, please read the following papers:

423 Dec 07, 2022
nn_builder lets you build neural networks with less boilerplate code

nn_builder lets you build neural networks with less boilerplate code. You specify the type of network you want and it builds it. Install pip install n

Petros Christodoulou 157 Nov 20, 2022
Code and data for "Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning" (EMNLP 2021).

GD-VCR Code for Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning (EMNLP 2021). Research Questions and Aims: How well can a model perform o

Da Yin 24 Oct 13, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

TUCH This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright License fo

Lea Müller 45 Jan 07, 2023
PenguinSpeciesPredictionML - Basic model to predict Penguin species based on beak size and sex.

Penguin Species Prediction (ML) 🐧 👨🏽‍💻 What? 💻 This project is a basic model using sklearn methods to predict Penguin species based on beak size

Tucker Paron 0 Jan 08, 2022
PyTorch implementation of Pay Attention to MLPs

gMLP PyTorch implementation of Pay Attention to MLPs. Quickstart Clone this repository. git clone https://github.com/jaketae/g-mlp.git Navigate to th

Jake Tae 34 Dec 13, 2022
StyleGAN2 Webtoon / Anime Style Toonify

StyleGAN2 Webtoon / Anime Style Toonify Korea Webtoon or Japanese Anime Character Stylegan2 base high Quality 1024x1024 / 512x512 Generate and Transfe

121 Dec 21, 2022
FSL-Mate: A collection of resources for few-shot learning (FSL).

FSL-Mate is a collection of resources for few-shot learning (FSL). In particular, FSL-Mate currently contains FewShotPapers: a paper list which tracks

Yaqing Wang 1.5k Jan 08, 2023
MIMO-UNet - Official Pytorch Implementation

MIMO-UNet - Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Rethinking Coarse-to-

Sungjin Cho 248 Jan 02, 2023
Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression

Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx

Arsenii Senya Ashukha 80 Sep 17, 2022
The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing".

BMC The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing". BibTex entry available here. B

Orange 383 Dec 16, 2022
Scheduling BilinearRewards

Scheduling_BilinearRewards Requirement Python 3 =3.5 Structure main.py This file includes the main function. For getting the results in Figure 1, ple

junghun.kim 0 Nov 25, 2021
Implementation of a Transformer using ReLA (Rectified Linear Attention)

ReLA (Rectified Linear Attention) Transformer Implementation of a Transformer using ReLA (Rectified Linear Attention). It will also contain an attempt

Phil Wang 49 Oct 14, 2022
Simulating Sycamore quantum circuits classically using tensor network algorithm.

Simulating the Sycamore quantum supremacy circuit This repo contains data we have obtained in simulating the Sycamore quantum supremacy circuits with

Feng Pan 46 Nov 17, 2022
Implementation of E(n)-Transformer, which extends the ideas of Welling's E(n)-Equivariant Graph Neural Network to attention

E(n)-Equivariant Transformer (wip) Implementation of E(n)-Equivariant Transformer, which extends the ideas from Welling's E(n)-Equivariant G

Phil Wang 132 Jan 02, 2023
The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation.

TME The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation. Our implementation is based on TG

2 Feb 10, 2022
Codes for 'Dual Parameterization of Sparse Variational Gaussian Processes'

Dual Parameterization of Sparse Variational Gaussian Processes Documentation | Notebooks | API reference Introduction This repository is the official

AaltoML 7 Dec 23, 2022
Binary Stochastic Neurons in PyTorch

Binary Stochastic Neurons in PyTorch http://r2rt.com/binary-stochastic-neurons-in-tensorflow.html https://github.com/pytorch/examples/tree/master/mnis

Onur Kaplan 54 Nov 21, 2022