DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

Overview

DatasetGAN

This is the official code and data release for:

DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

Yuxuan Zhang*, Huan Ling*, Jun Gao, Kangxue Yin, Jean-Francois Lafleche, Adela Barriuso, Antonio Torralba, Sanja Fidler

CVPR'21, Oral [paper] [supplementary] [Project Page]

News

  • Benchmark Challenge - A benchmark with diversed testing images is coming soon -- stay tuned!

  • Generated dataset for downstream tasks is coming soon -- stay tuned!

License

For any code dependency related to Stylegan, the license is under the Creative Commons BY-NC 4.0 license by NVIDIA Corporation. To view a copy of this license, visit LICENSE.

The code of DatasetGAN is released under the MIT license. See LICENSE for additional details.

The dataset of DatasetGAN is released under the Creative Commons BY-NC 4.0 license by NVIDIA Corporation. You can use, redistribute, and adapt the material for non-commercial purposes, as long as you give appropriate credit by citing our paper and indicating any changes that you've made.

Requirements

  • Python 3.6 or 3.7 are supported.
  • Pytorch 1.4.0 + is recommended.
  • This code is tested with CUDA 10.2 toolkit and CuDNN 7.5.
  • Please check the python package requirement from requirements.txt, and install using
pip install -r requirements.txt

Download Dataset from google drive and put it in the folder of ./datasetGAN/dataset_release. Please be aware that the dataset of DatasetGAN is released under the Creative Commons BY-NC 4.0 license by NVIDIA Corporation.

Download pretrained checkpoint from Stylegan and convert the tensorflow checkpoint to pytorch. Put checkpoints in the folder of ./datasetGAN/dataset_release/stylegan_pretrain. Please be aware that the any code dependency and checkpoint related to Stylegan, the license is under the Creative Commons BY-NC 4.0 license by NVIDIA Corporation.

Note: a good example of converting stylegan tensorlow checkpoint to pytorch is available this Link.

Training

To reproduce paper DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort:

cd datasetGAN
  1. Run Step1: Interpreter training.
  2. Run Step2: Sampling to generate massive annotation-image dataset.
  3. Run Step3: Train Downstream Task.

1. Interpreter Training

python train_interpreter.py --exp experiments/.json 

Note: Training time for 16 images is around one hour. 160G RAM is required to run 16 images training. One can cache the data returned from prepare_data function to disk but it will increase trianing time due to I/O burden.

Example of annotation schema for Face class. Please refer to paper for other classes.

img

2. Run GAN Sampling

python train_interpreter.py \
--generate_data True --exp experiments/.json  \
--resume [path-to-trained-interpreter in step3] \
--num_sample [num-samples]

To run sampling processes in parallel

sh datasetGAN/script/generate_face_dataset.sh

Example of sampling images and annotation:

img

3. Train Downstream Task

python train_deeplab.py \
--data_path [path-to-generated-dataset in step4] \
--exp experiments/.json

Inference

img

python test_deeplab_cross_validation.py --exp experiments/face_34.json\
--resume [path-to-downstream task checkpoint] --cross_validate True

June 21st Update:

For training interpreter, we change the upsampling method from nearnest upsampling to bilinar upsampling in line and update results in Table 1. The table reports mIOU.

Citations

Please ue the following citation if you use our data or code:

@inproceedings{zhang2021datasetgan,
  title={Datasetgan: Efficient labeled data factory with minimal human effort},
  author={Zhang, Yuxuan and Ling, Huan and Gao, Jun and Yin, Kangxue and Lafleche, Jean-Francois and Barriuso, Adela and Torralba, Antonio and Fidler, Sanja},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={10145--10155},
  year={2021}
}
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)

English | 简体中文 Welcome to the PaddlePaddle GitHub. PaddlePaddle, as the only independent R&D deep learning platform in China, has been officially open

19.4k Jan 04, 2023
An educational tool to introduce AI planning concepts using mobile manipulator robots.

JEDAI Explains Decision-Making AI Virtual Machine Image The recommended way of using JEDAI is to use pre-configured Virtual Machine image that is avai

Autonomous Agents and Intelligent Robots 13 Nov 15, 2022
Code for MarioNette: Self-Supervised Sprite Learning, in NeurIPS 2021

MarioNette | Webpage | Paper | Video MarioNette: Self-Supervised Sprite Learning Dmitriy Smirnov, Michaël Gharbi, Matthew Fisher, Vitor Guizilini, Ale

Dima Smirnov 28 Nov 18, 2022
Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction

Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction Official github repository for the paper High Fidelity De

28 Dec 16, 2022
Deeper insights into graph convolutional networks for semi-supervised learning

deeper_insights_into_GCNs Deeper insights into graph convolutional networks for semi-supervised learning References data and utils.py come from Implem

Davidham3 17 Dec 16, 2022
Emblaze - Interactive Embedding Comparison

Emblaze - Interactive Embedding Comparison Emblaze is a Jupyter notebook widget for visually comparing embeddings using animated scatter plots. It bun

CMU Data Interaction Group 77 Nov 24, 2022
Detecting and Tracking Small and Dense Moving Objects in Satellite Videos: A Benchmark

This dataset is a large-scale dataset for moving object detection and tracking in satellite videos, which consists of 40 satellite videos captured by Jilin-1 satellite platforms.

Qingyong 87 Dec 22, 2022
Supplementary code for the paper "Meta-Solver for Neural Ordinary Differential Equations" https://arxiv.org/abs/2103.08561

Meta-Solver for Neural Ordinary Differential Equations Towards robust neural ODEs using parametrized solvers. Main idea Each Runge-Kutta (RK) solver w

Julia Gusak 25 Aug 12, 2021
GyroSPD: Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices

GyroSPD Code for the paper "Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices" accepted at NeurIPS 2021. Re

Federico Lopez 12 Dec 12, 2022
Experimental solutions to selected exercises from the book [Advances in Financial Machine Learning by Marcos Lopez De Prado]

Advances in Financial Machine Learning Exercises Experimental solutions to selected exercises from the book Advances in Financial Machine Learning by

Brian 1.4k Jan 04, 2023
DeepLab2: A TensorFlow Library for Deep Labeling

DeepLab2 is a TensorFlow library for deep labeling, aiming to provide a unified and state-of-the-art TensorFlow codebase for dense pixel labeling tasks.

Google Research 845 Jan 04, 2023
This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch.

MPDL---TODO This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch. Ci

CodebaseLi 3 Nov 27, 2022
Code for our paper "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021

SimCLS Code for our paper: "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021 1. How to Install Requirements

Yixin Liu 150 Dec 12, 2022
Code for CVPR 2021 paper: Anchor-Free Person Search

Introduction This is the implementationn for Anchor-Free Person Search in CVPR2021 License This project is released under the Apache 2.0 license. Inst

158 Jan 04, 2023
Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

zshicode 1 Nov 18, 2021
ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

ROSITA News & Updates (24/08/2021) Release the demo to perform fine-grained semantic alignments using the pretrained ROSITA model. (15/08/2021) Releas

Vision and Language Group@ MIL 48 Dec 23, 2022
A paper using optimal transport to solve the graph matching problem.

GOAT A paper using optimal transport to solve the graph matching problem. https://arxiv.org/abs/2111.05366 Repo structure .github: Files specifying ho

neurodata 8 Jan 04, 2023
Attention mechanism with MNIST dataset

[TensorFlow] Attention mechanism with MNIST dataset Usage $ python run.py Result Training Loss graph. Test Each figure shows input digit, attention ma

YeongHyeon Park 12 Jun 10, 2022
implicit displacement field

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022
Build and run Docker containers leveraging NVIDIA GPUs

NVIDIA Container Toolkit Introduction The NVIDIA Container Toolkit allows users to build and run GPU accelerated Docker containers. The toolkit includ

NVIDIA Corporation 15.6k Jan 01, 2023