Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral)

Overview

arXiv GitHub Stars visitors

Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral)

This is the official implementation of IA-SSD (CVPR 2022), a simple and highly efficient point-based detector for 3D LiDAR point clouds. For more details, please refer to:

Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds
Yifan Zhang, Qingyong Hu*, Guoquan Xu, Yanxin Ma, Jianwei Wan, Yulan Guo

[Paper] [Video]

Getting Started

Installation

a. Clone this repository

git clone https://github.com/yifanzhang713/IA-SSD.git && cd IA-SSD

b. Configure the environment

We have tested this project with the following environments:

  • Ubuntu18.04/20.04
  • Python = 3.7
  • PyTorch = 1.1
  • CUDA = 10.0
  • CMake >= 3.13
  • spconv = 1.0
    # install spconv=1.0 library
    git clone https://github.com/yifanzhang713/spconv1.0.git
    cd spconv1.0
    sudo apt-get install libboostall-dev
    python setup.py bdist_wheel
    pip install ./dist/spconv-1.0*   # wheel file name may be different
    cd ..

*You are encouraged to try to install higher versions above, please refer to the official github repository for more information. Note that the maximum number of parallel frames during inference might be slightly decrease due to the larger initial GPU memory footprint with updated Pytorch version.

c. Install pcdet toolbox.

pip install -r requirements.txt
python setup.py develop

d. Prepare the datasets.

Download the official KITTI with road planes and Waymo datasets, then organize the unzipped files as follows:

IA-SSD
├── data
│   ├── kitti
│   │   ├── ImageSets
│   │   ├── training
│   │   │   ├──calib & velodyne & label_2 & image_2 & (optional: planes)
│   │   ├── testing
│   │   ├── calib & velodyne & image_2
│   ├── waymo
│   │   │── ImageSets
│   │   │── raw_data
│   │   │   │── segment-xxxxxxxx.tfrecord
|   |   |   |── ...
|   |   |── waymo_processed_data_v0_5_0
│   │   │   │── segment-xxxxxxxx/
|   |   |   |── ...
│   │   │── waymo_processed_data_v0_5_0_gt_database_train_sampled_1/
│   │   │── waymo_processed_data_v0_5_0_waymo_dbinfos_train_sampled_1.pkl
│   │   │── waymo_processed_data_v0_5_0_gt_database_train_sampled_1_global.npy (optional)
│   │   │── waymo_processed_data_v0_5_0_infos_train.pkl (optional)
│   │   │── waymo_processed_data_v0_5_0_infos_val.pkl (optional)
├── pcdet
├── tools

Generate the data infos by running the following commands:

# KITTI dataset
python -m pcdet.datasets.kitti.kitti_dataset create_kitti_infos tools/cfgs/dataset_configs/kitti_dataset.yaml

# Waymo dataset
python -m pcdet.datasets.waymo.waymo_dataset --func create_waymo_infos \
    --cfg_file tools/cfgs/dataset_configs/waymo_dataset.yaml

Quick Inference

We provide the pre-trained weight file so you can just run with that:

cd tools 
# To achieve fully GPU memory footprint (NVIDIA RTX2080Ti, 11GB).
python test.py --cfg_file cfgs/kitti_models/IA-SSD.yaml --batch_size 100 \
    --ckpt IA-SSD.pth --set MODEL.POST_PROCESSING.RECALL_MODE 'speed'

# To reduce the pressure on the CPU during preprocessing, a suitable batchsize is recommended, e.g. 16. (Over 5 batches per second on RTX2080Ti)
python test.py --cfg_file cfgs/kitti_models/IA-SSD.yaml --batch_size 16 \
    --ckpt IA-SSD.pth --set MODEL.POST_PROCESSING.RECALL_MODE 'speed' 
  • Then detailed inference results can be found here.

Training

The configuration files are in tools/cfgs/kitti_models/IA-SSD.yaml and tools/cfgs/waymo_models/IA-SSD.yaml, and the training scripts are in tools/scripts.

Train with single or multiple GPUs: (e.g., KITTI dataset)

python train.py --cfg_file cfgs/kitti_models/IA-SSD.yaml

# or 

sh scripts/dist_train.sh ${NUM_GPUS} --cfg_file cfgs/kitti_models/IA-SSD.yaml

Evaluation

Evaluate with single or multiple GPUs: (e.g., KITTI dataset)

python test.py --cfg_file cfgs/kitti_models/IA-SSD.yaml  --batch_size ${BATCH_SIZE} --ckpt ${PTH_FILE}

# or

sh scripts/dist_test.sh ${NUM_GPUS} \
    --cfg_file cfgs/kitti_models/IA-SSD.yaml --batch_size ${BATCH_SIZE} --ckpt ${PTH_FILE}

Experimental results

KITTI dataset

Quantitative results of different approaches on KITTI dataset (test set):

Qualitative results of our IA-SSD on KITTI dataset:

z z
z z

Quantitative results of different approaches on Waymo dataset (validation set):

Qualitative results of our IA-SSD on Waymo dataset:

z z
z z

Quantitative results of different approaches on ONCE dataset (validation set):

Qualitative result of our IA-SSD on ONCE dataset:

Citation

If you find this project useful in your research, please consider citing:

@inproceedings{zhang2022not,
  title={Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds},
  author={Zhang, Yifan and Hu, Qingyong and Xu, Guoquan and Ma, Yanxin and Wan, Jianwei and Guo, Yulan},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2022}
}

Acknowledgement

  • This work is built upon the OpenPCDet (version 0.5), an open source toolbox for LiDAR-based 3D scene perception. Please refer to the official github repository for more information.

  • Parts of our Code refer to 3DSSD-pytorch-openPCDet library and the the recent work SASA.

License

This project is released under the Apache 2.0 license.

Related Repos

  1. RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds GitHub stars
  2. SensatUrban: Learning Semantics from Urban-Scale Photogrammetric Point Clouds GitHub stars
  3. 3D-BoNet: Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds GitHub stars
  4. SpinNet: Learning a General Surface Descriptor for 3D Point Cloud Registration GitHub stars
  5. SQN: Weakly-Supervised Semantic Segmentation of Large-Scale 3D Point Clouds GitHub stars
  6. SoTA-Point-Cloud: Deep Learning for 3D Point Clouds: A Survey GitHub stars
Owner
Yifan Zhang
Yifan Zhang
A simple pytorch pipeline for semantic segmentation.

SegmentationPipeline -- Pytorch A simple pytorch pipeline for semantic segmentation. Requirements : torch=1.9.0 tqdm albumentations=1.0.3 opencv-pyt

petite7 4 Feb 22, 2022
Repository for the NeurIPS 2021 paper: "Exploiting Domain-Specific Features to Enhance Domain Generalization".

meta-Domain Specific-Domain Invariant (mDSDI) Source code implementation for the paper: Manh-Ha Bui, Toan Tran, Anh Tuan Tran, Dinh Phung. "Exploiting

VinAI Research 12 Nov 25, 2022
Official pytorch implementation of DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces

DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces Minhyuk Sung*, Zhenyu Jiang*, Panos Achlioptas, Niloy J. Mitra, Leonidas

Zhenyu Jiang 21 Aug 30, 2022
Sound Source Localization for AI Grand Challenge 2021

Sound-Source-Localization Sound Source Localization study for AI Grand Challenge 2021 (sponsored by NC Soft Vision Lab) Preparation 1. Place the data-

sanghoon 19 Mar 29, 2022
Implementation of the paper "Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning"

Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning This is the implementation of the paper "Self-Promoted Prototype Refinement

Kai Zhu 78 Dec 02, 2022
Individual Treatment Effect Estimation

CAPE Individual Treatment Effect Estimation Run CAPE python train_causal.py --loop 10 -m cape_cau -d NI --i_t 1 Run a baseline model python train_cau

S. Deng 4 Sep 02, 2022
A privacy-focused, intelligent security camera system.

Self-Hosted Home Security Camera System A privacy-focused, intelligent security camera system. Features: Multi-camera support w/ minimal configuration

Scott Barnes 175 Jan 01, 2023
Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in Pytorch

Retrieval-Augmented Denoising Diffusion Probabilistic Models (wip) Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in P

Phil Wang 55 Jan 01, 2023
JudeasRx - graphical app for doing personalized causal medicine using the methods invented by Judea Pearl et al.

JudeasRX Instructions Read the references given in the Theory and Notation section below Fire up the Jupyter Notebook judeas-rx.ipynb The notebook dra

Robert R. Tucci 19 Nov 07, 2022
Adversarial Texture Optimization from RGB-D Scans (CVPR 2020).

AdversarialTexture Adversarial Texture Optimization from RGB-D Scans (CVPR 2020). Scanning Data Download Please refer to data directory for details. B

Jingwei Huang 153 Nov 28, 2022
An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

rydercalmdown 24 Dec 09, 2022
PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021.

IBRNet: Learning Multi-View Image-Based Rendering PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021. IBRN

Google Interns 371 Jan 03, 2023
ImageNet Adversarial Image Evaluation

ImageNet Adversarial Image Evaluation This repository contains the code and some materials used in the experimental work presented in the following pa

Utku Ozbulak 11 Dec 26, 2022
4th place solution for the SIGIR 2021 challenge.

SIGIR-2021 (Tinkoff.AI) How to start Download train and test data: https://sigir-ecom.github.io/data-task.html Place it under sigir-2021/data/. Run py

Tinkoff.AI 4 Jul 01, 2022
Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation (RA-L/ICRA 2020)

Aerial Depth Completion This work is described in the letter "Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation", by Lucas

ETHZ V4RL 70 Dec 22, 2022
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
Interactive Visualization to empower domain experts to align ML model behaviors with their knowledge.

An interactive visualization system designed to helps domain experts responsibly edit Generalized Additive Models (GAMs). For more information, check

InterpretML 83 Jan 04, 2023
Vector.ai assignment

fabio-tests-nisargatman Low Level Approach: ###Tables: continents: id*, name, population, area, createdAt, updatedAt countries: id*, name, population,

Ravi Pullagurla 1 Nov 09, 2021
Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)

🔉 Sound-guided Semantic Image Manipulation (CVPR2022) Official Pytorch Implementation Sound-guided Semantic Image Manipulation IEEE/CVF Conference on

CVLAB 58 Dec 28, 2022
[CVPR2021 Oral] FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation.

FFB6D This is the official source code for the CVPR2021 Oral work, FFB6D: A Full Flow Biderectional Fusion Network for 6D Pose Estimation. (Arxiv) Tab

Yisheng (Ethan) He 201 Dec 28, 2022