RoBERTa Marathi Language model trained from scratch during huggingface ЁЯдЧ x flax community week

Overview

RoBERTa base model for Marathi Language (рдорд░рд╛рдареА рднрд╛рд╖рд╛)

Pretrained model on Marathi language using a masked language modeling (MLM) objective. RoBERTa was introduced in this paper and first released in this repository. We trained RoBERTa model for Marathi Language during community week hosted by Huggingface ЁЯдЧ using JAX/Flax for NLP & CV jax.

RoBERTa base model for Marathi language (рдорд░рд╛рдареА рднрд╛рд╖рд╛)

huggingface-marathi-roberta

Model description

Marathi RoBERTa is a transformers model pretrained on a large corpus of Marathi data in a self-supervised fashion.

Intended uses & limitations тЭЧя╕П

You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. We used this model to fine tune on text classification task for iNLTK and indicNLP news text classification problem statement. Since marathi mc4 dataset is made by scraping marathi newspapers text, it will involve some biases which will also affect all fine-tuned versions of this model.

How to use тЭУ

You can use this model directly with a pipeline for masked language modeling:

>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='flax-community/roberta-base-mr')
>>> unmasker("рдореЛрдареА рдмрд╛рддрдореА! рдЙрджреНрдпрд╛ рджреБрдкрд╛рд░реА <mask> рд╡рд╛рдЬрддрд╛ рдЬрд╛рд╣реАрд░ рд╣реЛрдгрд╛рд░ рджрд╣рд╛рд╡реАрдЪрд╛ рдирд┐рдХрд╛рд▓")
[{'score': 0.057209037244319916,'sequence': 'рдореЛрдареА рдмрд╛рддрдореА! рдЙрджреНрдпрд╛ рджреБрдкрд╛рд░реА рдЖрда рд╡рд╛рдЬрддрд╛ рдЬрд╛рд╣реАрд░ рд╣реЛрдгрд╛рд░ рджрд╣рд╛рд╡реАрдЪрд╛ рдирд┐рдХрд╛рд▓',
  'token': 2226,
  'token_str': 'рдЖрда'},
 {'score': 0.02796074189245701,
  'sequence': 'рдореЛрдареА рдмрд╛рддрдореА! рдЙрджреНрдпрд╛ рджреБрдкрд╛рд░реА реиреж рд╡рд╛рдЬрддрд╛ рдЬрд╛рд╣реАрд░ рд╣реЛрдгрд╛рд░ рджрд╣рд╛рд╡реАрдЪрд╛ рдирд┐рдХрд╛рд▓',
  'token': 987,
  'token_str': 'реиреж'},
 {'score': 0.017235398292541504,
  'sequence': 'рдореЛрдареА рдмрд╛рддрдореА! рдЙрджреНрдпрд╛ рджреБрдкрд╛рд░реА рдирдК рд╡рд╛рдЬрддрд╛ рдЬрд╛рд╣реАрд░ рд╣реЛрдгрд╛рд░ рджрд╣рд╛рд╡реАрдЪрд╛ рдирд┐рдХрд╛рд▓',
  'token': 4080,
  'token_str': 'рдирдК'},
 {'score': 0.01691395975649357,
  'sequence': 'рдореЛрдареА рдмрд╛рддрдореА! рдЙрджреНрдпрд╛ рджреБрдкрд╛рд░реА реирез рд╡рд╛рдЬрддрд╛ рдЬрд╛рд╣реАрд░ рд╣реЛрдгрд╛рд░ рджрд╣рд╛рд╡реАрдЪрд╛ рдирд┐рдХрд╛рд▓',
  'token': 1944,
  'token_str': 'реирез'},
 {'score': 0.016252165660262108,
  'sequence': 'рдореЛрдареА рдмрд╛рддрдореА! рдЙрджреНрдпрд╛ рджреБрдкрд╛рд░реА  рей рд╡рд╛рдЬрддрд╛ рдЬрд╛рд╣реАрд░ рд╣реЛрдгрд╛рд░ рджрд╣рд╛рд╡реАрдЪрд╛ рдирд┐рдХрд╛рд▓',
  'token': 549,
  'token_str': ' рей'}]

Training data ЁЯПЛЁЯП╗тАНтЩВя╕П

The RoBERTa Marathi model was pretrained on mr dataset of C4 multilingual dataset:

C4 (Colossal Clean Crawled Corpus), Introduced by Raffel et al. in Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer.

The dataset can be downloaded in a pre-processed form from allennlp or huggingface's datsets - mc4 dataset. Marathi (mr) dataset consists of 14 billion tokens, 7.8 million docs and with weight ~70 GB of text.

Data Cleaning ЁЯз╣

Though initial mc4 marathi corpus size ~70 GB, Through data exploration, it was observed it contains docs from different languages especially thai, chinese etc. So we had to clean the dataset before traning tokenizer and model. Surprisingly, results after cleaning Marathi mc4 corpus data:

Train set:

Clean docs count 1581396 out of 7774331.
~20.34% of whole marathi train split is actually Marathi.

Validation set

Clean docs count 1700 out of 7928.
~19.90% of whole marathi validation split is actually Marathi.

Training procedure ЁЯСиЁЯП╗тАНЁЯТ╗

Preprocessing

The texts are tokenized using a byte version of Byte-Pair Encoding (BPE) and a vocabulary size of 50265. The inputs of the model take pieces of 512 contiguous token that may span over documents. The beginning of a new document is marked with <s> and the end of one by </s> The details of the masking procedure for each sentence are the following:

  • 15% of the tokens are masked.
  • In 80% of the cases, the masked tokens are replaced by <mask>.
  • In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
  • In the 10% remaining cases, the masked tokens are left as is. Contrary to BERT, the masking is done dynamically during pretraining (e.g., it changes at each epoch and is not fixed).

Pretraining

The model was trained on Google Cloud Engine TPUv3-8 machine (with 335 GB of RAM, 1000 GB of hard drive, 96 CPU cores) 8 v3 TPU cores for 42K steps with a batch size of 128 and a sequence length of 128. The optimizer used is Adam with a learning rate of 3e-4, ╬▓1 = 0.9, ╬▓2 = 0.98 and ╬╡ = 1e-8, a weight decay of 0.01, learning rate warmup for 1,000 steps and linear decay of the learning rate after.

We tracked experiments and hyperparameter tunning on weights and biases platform. Here is link to main dashboard:
Link to Weights and Biases Dashboard for Marathi RoBERTa model

Pretraining Results ЁЯУК

RoBERTa Model reached eval accuracy of 85.28% around ~35K step with train loss at 0.6507 and eval loss at 0.6219.

Fine Tuning on downstream tasks

We performed fine-tuning on downstream tasks. We used following datasets for classification:

  1. IndicNLP Marathi news classification
  2. iNLTK Marathi news headline classification

Fine tuning on downstream task results (Segregated)

1. IndicNLP Marathi news classification

IndicNLP Marathi news dataset consists 3 classes - ['lifestyle', 'entertainment', 'sports'] - with following docs distribution as per classes:

train eval test
9672 477 478

ЁЯТп Our Marathi RoBERTa **roberta-base-mr model outperformed both classifier ** mentioned in Arora, G. (2020). iNLTK and Kunchukuttan, Anoop et al. AI4Bharat-IndicNLP.

Dataset FT-W FT-WC INLP iNLTK roberta-base-mr ЁЯПЖ
iNLTK Headlines 83.06 81.65 89.92 92.4 97.48

ЁЯдЧ Huggingface Model hub repo:
roberta-base-mr fine tuned on iNLTK Headlines classification dataset model:

flax-community/mr-indicnlp-classifier

ЁЯзк Fine tuning experiment's weight and biases dashboard link

2. iNLTK Marathi news headline classification

This dataset consists 3 classes - ['state', 'entertainment', 'sports'] - with following docs distribution as per classes:

train eval test
9658 1210 1210

ЁЯТп Here as well roberta-base-mr outperformed iNLTK marathi news text classifier.

Dataset iNLTK ULMFiT roberta-base-mr ЁЯПЖ
iNLTK news dataset (kaggle) 92.4 94.21

ЁЯдЧ Huggingface Model hub repo:
roberta-base-mr fine tuned on iNLTK news classification dataset model:

flax-community/mr-inltk-classifier

Fine tuning experiment's weight and biases dashboard link

Want to check how above models generalise on real world Marathi data?

Head to ЁЯдЧ Huggingface's spaces ЁЯкР to play with all three models:

  1. Mask Language Modelling with Pretrained Marathi RoBERTa model:
    flax-community/roberta-base-mr
  2. Marathi Headline classifier:
    flax-community/mr-indicnlp-classifier
  3. Marathi news classifier:
    flax-community/mr-inltk-classifier

alt text Streamlit app of Pretrained Roberta Marathi model on Huggingface Spaces

image

Team Members

Credits

Huge thanks to Huggingface ЁЯдЧ & Google Jax/Flax team for such a wonderful community week. Especially for providing such massive computing resource. Big thanks to @patil-suraj & @patrickvonplaten for mentoring during whole week.

Owner
Nipun Sadvilkar
I like to explore Jungle of Data with Python as my swiss knife with pandas, numpy, matplotlib and scikit-learn as its multi-toolsЁЯШЕ
Nipun Sadvilkar
HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty

HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty Giorgio Cantarini, Francesca Odone, Nicoletta Noceti, Federi

18 Aug 02, 2022
A curated list and survey of awesome Vision Transformers.

English | чоАф╜Уф╕нцЦЗ A curated list and survey of awesome Vision Transformers. You can use mind mapping software to open the mind mapping source file. You c

OpenMMLab 281 Dec 21, 2022
Source code of our work: "Benchmarking Deep Models for Salient Object Detection"

SALOD Source code of our work: "Benchmarking Deep Models for Salient Object Detection". In this works, we propose a new benchmark for SALient Object D

22 Dec 30, 2022
Code examples and benchmarks from the paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective"

Code For the Paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective" Author: Robert Bamler Date: 22 D

4 Nov 02, 2022
Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation

A Theoretical Analysis of the Repetition Problem in Text Generation This repository share the code for the paper "A Theoretical Analysis of the Repeti

Zihao Fu 37 Nov 21, 2022
A Python library created to assist programmers with complex mathematical functions

libmaths libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat

Simple 73 Oct 02, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
This is a Keras implementation of a CNN for estimating age, gender and mask from a camera.

face-detector-age-gender This is a Keras implementation of a CNN for estimating age, gender and mask from a camera. Before run face detector app, expr

Devdreamsolution 2 Dec 04, 2021
Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation

OoD_Gen-Chest_Xray Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation Requirements (Installations) Install the following libra

Enoch Tetteh 2 Oct 01, 2022
PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 20

Zhengqi Li 585 Jan 04, 2023
Learning Calibrated-Guidance for Object Detection in Aerial Images

Learning Calibrated-Guidance for Object Detection in Aerial Images arxiv We propose a simple yet effective Calibrated-Guidance (CG) scheme to enhance

51 Sep 22, 2022
ktrain is a Python library that makes deep learning and AI more accessible and easier to apply

Overview | Tutorials | Examples | Installation | FAQ | How to Cite Welcome to ktrain News and Announcements 2020-11-08: ktrain v0.25.x is released and

Arun S. Maiya 1.1k Jan 02, 2023
List of awesome things around semantic segmentation ЁЯОЙ

Awesome Semantic Segmentation List of awesome things around semantic segmentation ЁЯОЙ Semantic segmentation is a computer vision task in which we label

Dam Minh Tien 18 Nov 26, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
A minimal implementation of face-detection models using flask, gunicorn, nginx, docker, and docker-compose

Face-Detection-flask-gunicorn-nginx-docker This is a simple implementation of dockerized face-detection restful-API implemented with flask, Nginx, and

Pooya-Mohammadi 30 Dec 17, 2022
Python package for downloading ECMWF reanalysis data and converting it into a time series format.

ecmwf_models Readers and converters for data from the ECMWF reanalysis models. Written in Python. Works great in combination with pytesmo. Citation If

TU Wien - Department of Geodesy and Geoinformation 31 Dec 26, 2022
Yolo object detection - Yolo object detection with python

How to run download required files make build_image make download Docker versio

3 Jan 26, 2022
Which Style Makes Me Attractive? Interpretable Control Discovery and Counterfactual Explanation on StyleGAN

Interpretable Control Exploration and Counterfactual Explanation (ICE) on StyleGAN Which Style Makes Me Attractive? Interpretable Control Discovery an

Bo Li 11 Dec 01, 2022
[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos Created by Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang Feng, Jie

58 Dec 23, 2022
Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series Forecasting.

Non-AR Spatial-Temporal Transformer Introduction Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series For

Chen Kai 66 Nov 28, 2022