Research code for the paper "Fine-tuning wav2vec2 for speaker recognition"

Overview

Fine-tuning wav2vec2 for speaker recognition

This is the code used to run the experiments in https://arxiv.org/abs/2109.15053. Detailed logs of each training run can be found here:

Installing dependencies

If poetry is not installed, see https://python-poetry.org/docs/. We also expect at least python 3.8 on the system. If this is not the case, look into https://github.com/pyenv/pyenv for an easy tool to install a specific python version on your system.

The python dependencies can be installed (in a project-specific virtual environment) by:

$ poetry shell  # enter project-specific virtual environment

From now on, every command which should be run under the virtual environment (which looks like (wav2vec-speaker-identification- -py ) $ ) which is shortened to (xxx) $ .

Then install all required python packages:

(xxx) $ pip install -U pip
(xxx) $ poetry update # install dependencies 

Because PyTorch is currently serving the packages on PiPY incorrectly, we need to use pip to install the specific PyTorch versions we need.

(xxx) $ pip install -r requirements/requirements_cuda101.txt # if CUDA 10.1
(xxx) $ pip install -r requirements/requirements_cuda110.txt # if CUDA 11.0

Make sure to modify/create a requirements file for your operating system and CUDA version.

Finally, install the local package in the virtual environment by running

(xxx) $ poetry install

Setting up the environment

Copy the example environment variables:

$ cp .env.example .env 

You can then fill in .env accordingly.

Downloading and using voxceleb1 and 2

I've experienced that the download links for voxceleb1/2 can be unstable. I recommend manually downloading the dataset from the google drive link displayed on https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.html.

You should end up 4 zip files, which should be placed in $DATA_FOLDER/voxceleb_archives.

  1. vox1_dev_wav.zip
  2. vox1_test_wav.zip
  3. vox2_dev_aac.zip
  4. vox2_test_aac.zip

You should also download the meta files of voxceleb. You can use preparation_scripts/download_pretrained_models.sh to download them to the expected location $DATA_FOLDER/voxceleb_meta.

Converting voxceleb2 data from .m4a to .wav

This requires ffmpeg to be installed on the machine. Check with ffmpeg -version. Assuming the voxceleb2 data is placed at $DATA_FOLDER/voxceleb_archives/vox2_dev_aac.zip and $DATA_FOLDER/voxceleb_archives/vox2_test_aac.zip, run the following commands, starting from the root project directory.

source .env

PDIR=$PWD # folder where this README is located
D=$DATA_FOLDER # location of data - should be set in .env file 
WORKERS=$(nproc --all) # number of CPUs available 

# extract voxceleb 2 data
cd $D
mkdir -p convert_tmp/train convert_tmp/test

unzip voxceleb_archives/vox2_dev_aac.zip -d convert_tmp/train
unzip voxceleb_archives/vox2_test_aac.zip -d convert_tmp/test

# run the conversion script
cd $PDIR
poetry run python preparation_scripts/voxceleb2_convert_to_wav.py $D/convert_tmp --num_workers $WORKERS

# rezip the converted data
cd $D/convert_tmp/train
zip $D/voxceleb_archives/vox2_dev_wav.zip wav -r

cd $D/convert_tmp/test
zip $D/voxceleb_archives/vox2_test_wav.zip wav -r

# delete the unzipped .m4a files
cd $D
rm -r convert_tmp

Note that this process can take a few hours on a fast machine and day(s) on a single (slow) cpu. Make sure to save the vox2_dev_wav.zip and vox2_test_wav.zip files somewhere secure, so you don't have redo this process :).

Downloading pre-trained models.

You can run ./preparation_scripts/download_pretrained_models.sh to download the pre-trained models of wav2vec2 to the required $DATA_DIRECTORY/pretrained_models directory.

Running the experiments

Below we show all the commands for training the specified network. They should reproduce the results in the paper. Note that we used a SLURM GPU cluster and each command therefore includes hydra/launcher=slurm. If you want to reproduce these locally these lines need to be removed.

wav2vec2-sv-ce

auto_lr_find

python run.py +experiment=speaker_wav2vec2_ce \
tune_model=True data/module=voxceleb1 \
trainer.auto_lr_find=auto_lr_find tune_iterations=5000

5k iters, visually around 1e-4

grid search

grid = 1e-5, 5e-5, 9e-5, 1e-4, 2e-4, 5e-4, 1e-3

python run.py -m +experiment=speaker_wav2vec2_ce \
data.dataloader.train_batch_size=66 \
optim.algo.lr=1e-5,5e-5,9e-5,1e-4,2e-4,5e-4,1e-3 \
hydra/launcher=slurm hydra.launcher.exclude=cn104 hydra.launcher.array_parallelism=7

best performance n=3

python run.py -m +experiment=speaker_wav2vec2_ce \
data.dataloader.train_batch_size=66 optim.algo.lr=9e-5 \
seed=26160,79927,90537 \
hydra/launcher=slurm hydra.launcher.exclude=cn104 hydra.launcher.array_parallelism=3

best pooling n=3

python run.py -m +experiment=speaker_wav2vec2_ce \
data.dataloader.train_batch_size=66 optim.algo.lr=9e-5 \
seed=168621,597558,440108 \
network.stat_pooling_type=mean,mean+std,attentive,quantile,first,first+cls,last,middle,random,max \
hydra/launcher=slurm hydra.launcher.exclude=cn104 hydra.launcher.array_parallelism=4

wav2vec2-sv-aam

aam with m=0.2 and s=30

auto_lr_find

python run.py +experiment=speaker_wav2vec2_ce \
tune_model=True data/module=voxceleb1 \
trainer.auto_lr_find=auto_lr_find tune_iterations=5000 \
optim/loss=aam_softmax

grid search

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 \
optim.algo.lr=1e-5,5e-5,9e-5,1e-4,2e-4,5e-4,1e-3 \
hydra/launcher=slurm hydra.launcher.exclude=cn104 hydra.launcher.array_parallelism=7

same grid

best performance n=3

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 optim.algo.lr=0.00005 \
seed=29587,14352,70814 \
hydra/launcher=slurm hydra.launcher.exclude=cn104 hydra.launcher.array_parallelism=3

best pooling n=3

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 optim.algo.lr=0.00005 \
seed=392401,39265,62634  \
network.stat_pooling_type=mean,mean+std,attentive,quantile,first,first+cls,last,middle,random,max \
hydra/launcher=slurm hydra.launcher.exclude=cn104 hydra.launcher.array_parallelism=4

wav2vec2-sv-bce

auto_lr_find

python run.py +experiment=speaker_wav2vec2_pairs \
tune_model=True data/module=voxceleb1_pairs \
trainer.auto_lr_find=auto_lr_find tune_iterations=5000

grid search

5e-6,7e6,9e-6,1e-5,2e-5,3e-5,4e-5,1e-4

python run.py -m +experiment=speaker_wav2vec2_pairs \
optim.algo.lr=5e-6,7e-6,9e-6,1e-5,2e-5,3e-5,4e-5,1e-4 \
data.dataloader.train_batch_size=32 \
hydra/launcher=slurm hydra.launcher.exclude=cn104 hydra.launcher.array_parallelism=8

best performance n=4

python run.py -m +experiment=speaker_wav2vec2_pairs \
optim.algo.lr=0.00003 data.dataloader.train_batch_size=32 \
seed=154233,979426,971817,931201 \
hydra/launcher=slurm hydra.launcher.exclude=cn104 hydra.launcher.array_parallelism=4 

xvector

auto_lr_find

python run.py +experiment=speaker_xvector \
tune_model=True data/module=voxceleb1 \
trainer.auto_lr_find=auto_lr_find tune_iterations=5000

grid search

1e-5,6e-5,1e-4,2e-4,3e-4,4e-4,8e-4,1e-3

python run.py -m +experiment=speaker_xvector \
optim.algo.lr=1e-5,6e-5,1e-4,2e-4,3e-4,4e-4,8e-4,1e-3 \
data.dataloader.train_batch_size=66 \
hydra/launcher=slurm hydra.launcher.exclude=cn105 hydra.launcher.array_parallelism=8

best performance n=3

python run.py -m +experiment=speaker_xvector \
optim.algo.lr=0.0004 trainer.max_steps=100_000 \
data.dataloader.train_batch_size=66 \
seed=82713,479728,979292 \
hydra/launcher=slurm hydra.launcher.exclude=cn105 hydra.launcher.array_parallelism=6 \

ecapa-tdnn

auto_lr_find

python run.py +experiment=speaker_ecapa_tdnn \
tune_model=True data/module=voxceleb1 \
trainer.auto_lr_find=auto_lr_find tune_iterations=5000

grid search

5e-6,1e-5,5e-4,1e-4,5e-3,7e-4,9e-4,1e-3

python run.py -m +experiment=speaker_ecapa_tdnn \
optim.algo.lr=5e-6,1e-5,5e-4,1e-4,5e-3,7e-4,9e-4,1e-3 \
data.dataloader.train_batch_size=66 \
hydra/launcher=slurm hydra.launcher.exclude=cn105 hydra.launcher.array_parallelism=8

best performance n=3

python run.py -m +experiment=speaker_ecapa_tdnn \
optim.algo.lr=0.001 trainer.max_steps=100_000 \
data.dataloader.train_batch_size=66 \
seed=494671,196126,492116 \
hydra/launcher=slurm hydra.launcher.exclude=cn105 hydra.launcher.array_parallelism=6

Ablation

baseline

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 optim.algo.lr=0.00005 \
seed=392401,39265,62634 network.stat_pooling_type=first+cls \
hydra/launcher=slurm hydra.launcher.array_parallelism=3

unfrozen feature extractor

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 optim.algo.lr=0.00005 \
seed=914305,386390,865459 network.stat_pooling_type=first+cls \
network.completely_freeze_feature_extractor=False tag=no_freeze \
hydra/launcher=slurm hydra.launcher.array_parallelism=3 hydra.launcher.exclude=cn104

no pre-trained weights

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 optim.algo.lr=0.00005 \
seed=517646,414321,137524 network.stat_pooling_type=first+cls \
network.completely_freeze_feature_extractor=False network.reset_weights=True tag=no_pretrain \
hydra/launcher=slurm hydra.launcher.array_parallelism=3 hydra.launcher.exclude=cn104

no layerdrop

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 optim.algo.lr=0.00005 \
seed=15249,728106,821754 network.stat_pooling_type=first+cls \
network.layerdrop=0.0 tag=no_layer \
hydra/launcher=slurm hydra.launcher.array_parallelism=3

no dropout

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 optim.algo.lr=0.00005 \
seed=627687,883727,154405 network.stat_pooling_type=first+cls \
network.layerdrop=0.0 network.attention_dropout=0 \ 
network.feat_proj_dropout=0 network.hidden_dropout=0 tag=no_drop \
hydra/launcher=slurm hydra.launcher.array_parallelism=3 

no time masking

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 optim.algo.lr=0.00005 \
seed=602400,553540,419322 network.stat_pooling_type=first+cls \
network.layerdrop=0.0 network.attention_dropout=0 network.feat_proj_dropout=0 \
network.hidden_dropout=0 network.mask_time_prob=0 tag=no_mask \
hydra/launcher=slurm hydra.launcher.array_parallelism=3 

batch size 32

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=32 trainer.max_steps=200_000 \
optim.algo.lr=0.00005 network.stat_pooling_type=first+cls \
tag=bs_32 seed=308966,753370,519822 \
hydra/launcher=slurm hydra.launcher.array_parallelism=3 

batch size 128

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=128 trainer.max_steps=50_000 \
optim.algo.lr=0.00005 seed=54375,585956,637400 \
network.stat_pooling_type=first+cls tag=bs_128 \
hydra/launcher=slurm hydra.launcher.array_parallelism=3 hydra.launcher.exclude=cn104

constant lr=3e-6

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 optim.algo.lr=3e-6 \
seed=549686,190215,637679 network.stat_pooling_type=first+cls \
optim/schedule=constant tag=lr_low \
hydra/launcher=slurm hydra.launcher.array_parallelism=3 

constant lr=5e-5

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 optim.algo.lr=0.00005 \
seed=419703,980724,124995 network.stat_pooling_type=first+cls \
optim/schedule=constant tag=lr_same \
hydra/launcher=slurm hydra.launcher.array_parallelism=3  

tri_stage

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 optim.algo.lr=0.00005 \
seed=856797,952324,89841 network.stat_pooling_type=first+cls \
optim/schedule=tri_stage tag=lr_3stage \
optim.schedule.scheduler.lr_lambda.initial_lr=1e-7 optim.schedule.scheduler.lr_lambda.final_lr=1e-7 \
hydra/launcher=slurm hydra.launcher.array_parallelism=3

exp decay

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 optim.algo.lr=0.00005 seed=962764,682423,707761 \
network.stat_pooling_type=first+cls optim/schedule=exp_decay tag=lr_exp_decay \
optim.schedule.scheduler.lr_lambda.final_lr=1e-7 \
hydra/launcher=slurm hydra.launcher.array_parallelism=3  
Owner
Nik
PhD student at Radboud University Nijmegen
Nik
[ICLR 2021 Spotlight] Pytorch implementation for "Long-tailed Recognition by Routing Diverse Distribution-Aware Experts."

RIDE: Long-tailed Recognition by Routing Diverse Distribution-Aware Experts. by Xudong Wang, Long Lian, Zhongqi Miao, Ziwei Liu and Stella X. Yu at UC

Xudong (Frank) Wang 205 Dec 16, 2022
Indobenchmark are collections of Natural Language Understanding (IndoNLU) and Natural Language Generation (IndoNLG)

Indobenchmark Toolkit Indobenchmark are collections of Natural Language Understanding (IndoNLU) and Natural Language Generation (IndoNLG) resources fo

Samuel Cahyawijaya 11 Aug 26, 2022
SentAugment is a data augmentation technique for semi-supervised learning in NLP.

SentAugment SentAugment is a data augmentation technique for semi-supervised learning in NLP. It uses state-of-the-art sentence embeddings to structur

Meta Research 363 Dec 30, 2022
Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks

Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks. It takes raw videos/images + text as inputs, and outputs task predictions. ClipB

Jie Lei 雷杰 612 Jan 04, 2023
NLP library designed for reproducible experimentation management

Welcome to the Transfer NLP library, a framework built on top of PyTorch to promote reproducible experimentation and Transfer Learning in NLP You can

Feedly 290 Dec 20, 2022
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

LancoPKU 105 Jan 03, 2023
Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

1.9k Jan 08, 2023
Chinese NewsTitle Generation Project by GPT2.带有超级详细注释的中文GPT2新闻标题生成项目。

GPT2-NewsTitle 带有超详细注释的GPT2新闻标题生成项目 UpDate 01.02.2021 从网上收集数据,将清华新闻数据、搜狗新闻数据等新闻数据集,以及开源的一些摘要数据进行整理清洗,构建一个较完善的中文摘要数据集。 数据集清洗时,仅进行了简单地规则清洗。

logCong 785 Dec 29, 2022
Espial is an engine for automated organization and discovery of personal knowledge

Live Demo (currently not running, on it) Espial is an engine for automated organization and discovery in knowledge bases. It can be adapted to run wit

Uzay-G 159 Dec 30, 2022
What are the best Systems? New Perspectives on NLP Benchmarking

What are the best Systems? New Perspectives on NLP Benchmarking In Machine Learning, a benchmark refers to an ensemble of datasets associated with one

Pierre Colombo 12 Nov 03, 2022
华为商城抢购手机的Python脚本 Python script of Huawei Store snapping up mobile phones

HUAWEI STORE GO 2021 说明 基于Python3+Selenium的华为商城抢购爬虫脚本,修改自近两年没更新的项目BUY-HW,为女神抢Nova 8(什么时候华为开始学小米玩饥饿营销了?) 原项目的登陆以及抢购部分已经不可用,本项目对原项目进行了改正以适应新华为商城,并增加一些功能

ZhangLiang 111 Dec 22, 2022
Implementation of legal QA system based on SentenceKoBART

LegalQA using SentenceKoBART Implementation of legal QA system based on SentenceKoBART How to train SentenceKoBART Based on Neural Search Engine Jina

Heewon Jeon(gogamza) 75 Dec 27, 2022
Code for "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022.

README Code for Two-stage Identifier: "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022. For details of the model a

Yongliang Shen 45 Nov 29, 2022
💫 Industrial-strength Natural Language Processing (NLP) in Python

spaCy: Industrial-strength NLP spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest researc

Explosion 24.9k Jan 02, 2023
CredData is a set of files including credentials in open source projects

CredData is a set of files including credentials in open source projects. CredData includes suspicious lines with manual review results and more information such as credential types for each suspicio

Samsung 19 Sep 07, 2022
SGMC: Spectral Graph Matrix Completion

SGMC: Spectral Graph Matrix Completion Code for AAAI21 paper "Scalable and Explainable 1-Bit Matrix Completion via Graph Signal Learning". Data Format

Chao Chen 8 Dec 12, 2022
An official implementation for "CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval"

The implementation of paper CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval. CLIP4Clip is a video-text retrieval model based

ArrowLuo 456 Jan 06, 2023
Sploitus - Command line search tool for sploitus.com. Think searchsploit, but with more POCs

Sploitus Command line search tool for sploitus.com. Think searchsploit, but with

watchdog2000 5 Mar 07, 2022
The projects lets you extract glossary words and their definitions from a given piece of text automatically using NLP techniques

Unsupervised technique to Glossary and Definition Extraction Code Files GPT2-DefinitionModel.ipynb - GPT-2 model for definition generation. Data_Gener

Prakhar Mishra 28 May 25, 2021
100+ Chinese Word Vectors 上百种预训练中文词向量

Chinese Word Vectors 中文词向量 中文 This project provides 100+ Chinese Word Vectors (embeddings) trained with different representations (dense and sparse),

embedding 10.4k Jan 09, 2023