Fake-user-agent-traffic-geneator - Python CLI Tool to generate fake traffic against URLs with configurable user-agents

Overview

Fake traffic generator for Gartner Demo

Generate fake traffic to URLs with custom user-agents

Usage

Running Complete

Tested with Python 3.9.5 and pip 22.0.3 on MacOS 10.15.7

I highly recommend you always run each Python project within its own virtualenv. The commands below assume you have already created and activated a virtualenv for this project.

git clone [email protected]:newrelic-experimental/fake-user-agent-traffic-geneator.git
cd fake-user-agent-traffic-geneator
pip install -r requirements.txt
python generate.py

Config

Configuration is done via the config.toml file.

Global settings

Name Type Description
concurrency int max asyncio primitives
urls list[str] List of URLs to target

Target settings

The target of each request is grouped together into Targets

Name Type Description
allowed_request_types list[str] Allowed request types
url str The URL to request
form Optional[Dict[str, Dict[str, str]]] Form submission details for request (browser only)
form.button_selector str CSS selector of the form submit button
form.inputs.selector str CSS selector for form input field
form.inputs.value str Value to enter into form input field

Request settings

Request specific settings are grouped together into Personas, you can create as many personas as you would like for each run.

Name Type Description
request_type "browser" or "api" How the request should be executed ("browser" is required for RUM)
min_requests int Minimum number of requests to make per URL
max_requests int Maximum number of requests to make per URL
timeout Optional[int] Request timeout in seconds
cache_enabled Optional[bool] Enable browser cache (only used when browser=true)
user_agents list[str] User-Agent strings to use. A random ua will be choosen per request
custom_headers Optional[list[list[str, str]]] Any other headers to send with the request. See the example below for syntax
color str Persona text color in progress bar

Each custom header must be a list where index 0 is the header key and index 1 is the header value. For example:

custom_headers = [["X-Script-Version", "v0.0.1"], ["X-Something-else", "abc"]]

Owner
New Relic Experimental
Experimental code and projects by @newrelic employees (Relics) and our community members across the globe.
New Relic Experimental
ObjectDrawer-ToolBox: a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system

ObjectDrawer-ToolBox is a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system, Object Drawer.

77 Jan 05, 2023
Collect super-resolution related papers, data, repositories

Collect super-resolution related papers, data, repositories

WangChaofeng 1.7k Jan 03, 2023
Fewshot-face-translation-GAN - Generative adversarial networks integrating modules from FUNIT and SPADE for face-swapping.

Few-shot face translation A GAN based approach for one model to swap them all. The table below shows our priliminary face-swapping results requiring o

768 Dec 24, 2022
Implementation of Neonatal Seizure Detection using EEG signals for deploying on edge devices including Raspberry Pi.

NeonatalSeizureDetection Description Link: https://arxiv.org/abs/2111.15569 Citation: @misc{nagarajan2021scalable, title={Scalable Machine Learn

Vishal Nagarajan 11 Nov 08, 2022
Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference

RawVSR This repo contains the official codes for our paper: Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference Xiaoh

Xiaohong Liu 23 Oct 08, 2022
Kaggle Feedback Prize - Evaluating Student Writing 15th solution

Kaggle Feedback Prize - Evaluating Student Writing 15th solution First of all, I would like to thank the excellent notebooks and discussions from http

Lingyuan Zhang 6 Mar 24, 2022
Posterior predictive distributions quantify uncertainties ignored by point estimates.

Posterior predictive distributions quantify uncertainties ignored by point estimates.

DeepMind 177 Dec 06, 2022
MonoRCNN is a monocular 3D object detection method for automonous driving

MonoRCNN MonoRCNN is a monocular 3D object detection method for automonous driving, published at ICCV 2021. This project is an implementation of MonoR

87 Dec 27, 2022
Ranger - a synergistic optimizer using RAdam (Rectified Adam), Gradient Centralization and LookAhead in one codebase

Ranger-Deep-Learning-Optimizer Ranger - a synergistic optimizer combining RAdam (Rectified Adam) and LookAhead, and now GC (gradient centralization) i

Less Wright 1.1k Dec 21, 2022
Rainbow: Combining Improvements in Deep Reinforcement Learning

Rainbow Rainbow: Combining Improvements in Deep Reinforcement Learning [1]. Results and pretrained models can be found in the releases. DQN [2] Double

Kai Arulkumaran 1.4k Dec 29, 2022
Geometric Algebra package for JAX

JAXGA - JAX Geometric Algebra GitHub | Docs JAXGA is a Geometric Algebra package on top of JAX. It can handle high dimensional algebras by storing onl

Robin Kahlow 36 Dec 22, 2022
Training DiffWave using variational method from Variational Diffusion Models.

Variational DiffWave Training DiffWave using variational method from Variational Diffusion Models. Quick Start python train_distributed.py discrete_10

Chin-Yun Yu 26 Dec 13, 2022
Learn other languages ​​using artificial intelligence with python.

The main idea of ​​the project is to facilitate the learning of other languages. We created a simple AI that will interact with you. Just ask questions that if she knows, she will answer.

Pedro Rodrigues 2 Jun 07, 2022
cl;asification problem using classification models in supervised learning

wine-quality-predition---classification cl;asification problem using classification models in supervised learning Wine Quality Prediction Analysis - C

Vineeth Reddy Gangula 1 Jan 18, 2022
PyTorch implementation of probabilistic deep forecast applied to air quality.

Probabilistic Deep Forecast PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting

Abdulmajid Murad 13 Nov 16, 2022
Using this codebase as a tool for my own research. Making some modifications to the original repo for my own purposes.

For SwapNet Create a list.txt file containing all the images to process. This can be done with the GNU find command: find path/to/input/folder -name '

Andrew Jong 2 Nov 10, 2021
Cossim - Sharpened Cosine Distance implementation in PyTorch

Sharpened Cosine Distance PyTorch implementation of the Sharpened Cosine Distanc

Istvan Fehervari 10 Mar 22, 2022
Deep Learning Training Scripts With Python

Deep Learning Training Scripts DNN Frameworks Caffe PyTorch Tensorflow CNN Models VGG ResNet DenseNet Inception Language Modeling GatedCNN-LM Attentio

Multicore Computing Research Lab 16 Dec 15, 2022
Code for our paper "Multi-scale Guided Attention for Medical Image Segmentation"

Medical Image Segmentation with Guided Attention This repository contains the code of our paper: "'Multi-scale self-guided attention for medical image

Ashish Sinha 394 Dec 28, 2022
Qlib is an AI-oriented quantitative investment platform

Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment.

Microsoft 10.1k Dec 30, 2022