The PicoEMP is a low-cost Electromagnetic Fault Injection (EMFI) tool,

Overview

ChipSHOUTER-PicoEMP

CC BY-SA 3.0

The PicoEMP is a low-cost Electromagnetic Fault Injection (EMFI) tool, designed specifically for self-study and hobbiest research. Under the safety shield it looks like this:

Background

The ChipSHOUTER is a high-end Electromagnetic Fault Injection (EMFI) tool designed by Colin at NewAE Technology. While not the first commercially available EMFI tool, ChipSHOUTER was the first "easily purchasable" (even if expensive) tool with extensive open documentation. The tool was not open-source, but it did contain a variety of detailed description of the design and architecture in the User Manual. The ChipSHOUTER design optimization focused in rough order on (1) safe operation, (2) high performance, (3) usability, and finally (4) cost. This results in a tool that covers many use-cases, but may be overkill (and too costly) for many. In additional, acquiring the safety testing/certification is not cheap, and must be accounted for in the product sale price.

The PicoEMP tries to fill in the gap that ChipSHOUTER leaves at the lower end of the spectrum. This PicoEMP project is not the ChipSHOUTER. Instead it's designed to present a "bare bones" tool that has a design optimization focused in rough order of (1) safe operation, (2) cost, (3) usability, (4) performance. Despite the focus on safety and low-cost, it works suprisingly well. It is also not sold as a complete product - you are responsible for building it, ensuring it meets any relevant safety requirements/certifications, and we completely disclaim all liability for what happens next. Please only use PicoEMP where you are building and controlling it yourself, with total understanding of the operation and risks. It is not designed to be used in professional or educational environments, where tools are expected to meet safety certifications (ChipSHOUTER was designed for these use-cases).

Building a PicoEMP

The PicoEMP uses a Raspberry Pi Pico as the controller. You could alternatively use an Arduino or another microcontroller. You basically just need a few things:

  1. PWM output to drive HV transformer.
  2. Pulse pin to generate a pulse.
  3. Status pin to monitor the HV status.

You have two options for building the PicoEMP: (1) total scratch build, or (2) easy-assemble build.

Scratch Build

The PCB is mostly one layer. Original versions of it were milled on a Bantam PCB mill, and the final 'production' version is designed to still allow this simple milling process. You can find details in the gerbers folder, including Bantam-optimized files which remove some of the smaller vias (used for the mounting holes), and require you to surface-mount the Raspberry Pi Pico. Here was 'rev3' of the PCB with a few hacked up tests:

If you've got time you can order the "real" PCBs from the gerbers as well.

The BOM and build details are described in the hardware folder. If you cannot find the plastic shield (the upper half of Hammond 1551BTRD is used), you can find a simple 3D-printable shield as well. The official shield is low-cost and available from Digikey/Mouser/ Newark so you can purchase alongside everything else you need.

IMPORTANT: The plastic shield is critical for safe operation. While the output itself is isolated from the input connections, you will still easily shock yourself on the exposed high-voltage capacitor and circuitry. NEVER operate the device without the shield.

Easy-Assemble Build

The Easy-Assembly build uses a "mostly complete" SMD board, which you need to solder a Raspberry Pi Pico, switches, and through-hole headers.

This does not yet exist to buy! If you are interested drop a note on Issue #1

Programming the PicoEMP

You'll need to program the PicoEMP with the firmware in the firmware directory. You can run other tasks on the microcontroller as well.

Building the EM Injection Tip (Probe / Coil)

You will also need an "injection tip", typically made with a ferrite core and some wires wrapped around it. You can see examples of such cores in the ChipSHOUTER kit. The following shows a few homemade & commercial tips:

You can make your own from suitable SMA connectors, magnet wire, and a ferrite core material. See the injection_tips folder for more examples and details on building the probes.

Reader Note: Please submit your own examples with a pull-request to this repo, it would be great to have more examples of probe geometries

You can find additional examples of homemade cores in research papers such as:

  • A. Cui, R. Housley, "BADFET: Defeating Modern Secure Boot Using Second-Order Pulsed Electromagnetic Fault Injection," USENIX Workshop on Offensive Technologies (WOOT 17), 2017. Paper Link. Slides Link.
  • J. Balasch, D. Arumí and S. Manich, "Design and validation of a platform for electromagnetic fault injection," 2017 32nd Conference on Design of Circuits and Integrated Systems (DCIS), 2017, pp. 1-6. Paper Link.
  • J. Toulemont, G. Chancel, J. M. Galliere, F. Mailly, P. Nouet and P. Maurine, "On the scaling of EMFI probes," 2021 Workshop on Fault Detection and Tolerance in Cryptography (FDTC), 2021. Paper Link. Slides Link.
  • LimitedResults. "Enter the Gecko," 2021. Blog Link

Using the PicoEMP

The general usage of the PicoEMP is as follows:

  1. Press the "ARM" button. The red "ARMING" led will come on instantly telling you it's trying to charge the high voltage.
  2. The red "HV" led will come on after a few seconds saying it is charged to "some voltage".
  3. Place the probe tip overtop of the target.
  4. Press the "Pulse" button.

You can see more examples of this in the video (TODO RECORD A VIDEO).

You can even use the Raspberry Pi Pico to attack a Raspberry Pi "regular"! Here's a demo hitting a RSA signature on a Raspberry Pi (the demo code taken from Colin's Remoticon 2021 Talk):

WARNING: The high voltage will be applied across the SMA connector. If an injection tip (coil) is present, it will absorb most of the power. If you leave the SMA connector open, you will present a high voltage pulse across this SMA and could shock yourself. Do NOT touch the output SMA tip as a general "best practice", and treat the output as if it has a high voltage present.

The full ChipSHOUTER detects the missing connector tip and refuses to power up the high voltage, the PicoEMP does not have this failsafe!

About the High Voltage Isolation

Most EMFI tools generate high voltages (similar to a camera flash). Many previous designs of open-source EMFI tools would work well, but exposed the user to high voltages. This was fine provided you use the tool correctly, but of course there is always a risk of grabbing the electrically "hot" tool! This common design choice happens because the easiest way to design an EMFI tool is with "low-side switching" (there is a very short mention of these design choices as well in my book if you are curious). With low-side switching the output connector is always "hot", which presents a serious shock hazard.

PicoEMP gets around this problem by floating the high-voltage side, meaning there is no electrical path between the EMFI probe output and the input voltage ground. With the isolated high voltage output we can use the simple "low-side switching" in a safe manner. Some current will still flow due to the high-frequency spikes, so this isn't perfect, but it works well enough in practice (well enough you will shock yourself less often).

The caveat here is for this to work you also need to isolate your gate drive. There are a variety of solutions to this, with the simplist being a gate drive transformer (GDT). The PicoEMP uses the transformer architecture, with some simplifications to further reduce BOM count.

More details of the design are available in the hardware folder.

Hipot Testing for Validating Isolation

Easy-assemble builds have been subject to a hipot test. This test validates the isolation exists, and has not been compromised by things like leftover flux on the PCB.

This test applies a high voltage (1000V) from the SMA connector pads to the low-voltage signals shorted together. The test is done at 1000V DC, with test passing if LESS than 1 uA of current flows over the 60 seconds test duration. Note this limits is far lower than most industry standard limits.

Technical Differences between ChipSHOUTER and PicoEMP

The main differences from a technical standpoint:

  • ChipSHOUTER uses a much more powerful high voltage circuit and transformer (up to ~30W vs ~0.2W) that gives it almost unlimited glitch delivery, typically limited by your probe tip. The PicoEMP is slower to recover, typically ~1 to 4 seconds between glitches.

  • ChipSHOUTER has a larger internal energy storage & more powerful output drivers.

  • ChipSHOUTER has a controlled high-voltage setting from 150V to 500V. PicoEMP generates ~250V, there is some feedback but it's uncalibrated. NOTE: The PicoEMP allows some control of output pulse size by instead controlling the drive signal. This is less reliable (more variability in the output), but meets the goal of using the lowest-cost control method.

License

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 International License.

Owner
NewAE Technology Inc.
NewAE Technology Inc. is the embedded security arsonist.
NewAE Technology Inc.
A lightweight script for updating custom components for Home Assistant

Updater for Home Assistant This is a lightweight script for updating custom components for Home Assistant. If for some reason you do not want to use H

Alex X 12 Sep 21, 2022
This allows you to record keyboard and mouse input, and play it back using pynput.

Record and Play with Python! This allows you to record keyboard and mouse input, and play it back (with looping) using pynput. It allows for automatio

George Jensen 45 Jan 02, 2023
Python Client for ESPHome native API. Used by Home Assistant.

aioesphomeapi aioesphomeapi allows you to interact with devices flashed with ESPHome. Installation The module is available from the Python Package Ind

ESPHome 76 Jan 04, 2023
A python file which I wrote to allow the Dorna Robots API to draw an Image on a 3D plane

Dorna-Robotics-Internship Code In the directory "Code" is a python file which I wrote to allow the Dorna Robots API to draw an Image on a 3D plane. I

Stephen Otto 2 Dec 06, 2021
Component for deep integration LedFx from Home Assistant.

LedFX for Home Assistant Component for deep integration LedFx from Home Assistant. Table of Contents FAQ Install Config Performance FAQ Q. What versio

Dmitry Mamontov 28 Dec 13, 2022
LUNA: a USB multitool & nMigen library

LUNA is a full toolkit for working with USB using FPGA technology; and provides hardware, gateware, and software to enable USB applications.

Great Scott Gadgets 750 Dec 28, 2022
Electrolux Pure i9 robot vacuum integration for Home Assistant.

Home Assistant Pure i9 This repository integrates your Electrolux Pure i9 robot vacuum with the smart home platform Home Assistant. The integration co

Niklas Ekman 15 Dec 22, 2022
DNP3 Stalker is a project to analyze and interact with DNP3 devices

DNP3 Stalker Purpose DNP3 Stalker is a project to analyze and interact with DNP3

Cutaway Security, LLC. 2 Feb 10, 2022
A IC scan test interface for Arduino

ICSCAN_ARDUINO Prerequisites Python 3.6 or higher arduino uno or nano what is this It is a bitstream tranceiver to test IC chip It sends bitstream to

Nifty Chips Laboratory 0 Sep 15, 2022
Automatic Watering System using Soil Moisture Sensor and RTC Timer with Arduino

Automatic-Watering-System - Technical Answers to Real-World Problems. Evolution of Watering Manually to Watering Automatically.

Vaishnavi Pothugunta 4 Dec 31, 2021
Sensor of Temperature Feels Like for Home Assistant.

Please ⭐ this repo if you find it useful Sensor of Temperature Feels Like for Home Assistant Installation Install from HACS (recommended) Have HACS in

Andrey 60 Dec 25, 2022
This repository contains all the code and files needed to simulate the notspot quadrupedal robot using Gazebo and ROS.

Notspot robot simulation - Python version This repository contains all the files and code needed to simulate the notspot quadrupedal robot using Gazeb

50 Sep 26, 2022
Home Assistant custom integration for Yi cameras: yi-hack-MStar, yi-hack-Allwinner and yi-hack-Allwinner-v2

yi-hack Home Assistant integration Overview yi-hack Home Assistant is a custom integration for Yi cameras (or Sonoff camera) with one of the following

roleo 131 Jan 03, 2023
Drobo Status is a python program that will connect to your Drobo and return JSON data regarding your Drobo

This is a simple python script that will run a docker container to pull data from Drobo. It will give information like (Name, serial, firmware, disk-total, disk-used, disk-free and individual disk st

Biofects 1 Jan 15, 2022
Raspberry Pi & Accelerometer with Losant's EEA

Raspberry Pi & Accelerometer with Losant's EEA This is a repository that contains companion code to this EEA How To guide. Each folder is named accord

Losant 1 Oct 29, 2021
Python code written to utilize the Korlan usb2can hardware to send and receive data over the can-bus on a 2008 Nissan 350z

nissan_ecu_hacking Python code written to utilize the Korlan usb2can hardware to send and receive data over the can-bus on a 2008 Nissan 350z My goal

Liam Goss 11 Sep 24, 2022
A python module for interacting with rolimon's, a roblox value site.

rpi - rolimon's python interaction rpi is an open source python-based rolimon's api wrapper. It provides an end-to-end pipeline in which each componen

Acier 11 Nov 08, 2022
A simple portable USB MIDI controller based on Raspberry-PI Pico and a 16-button keypad, written in Circuit Python

RPI-Pico-16-BTn-MIDI-Controller-using-CircuitPython A simple portable USB MIDI controller based on Raspberry-PI Pico, written in Circuit Python. Link

Rounak Dutta 3 Dec 04, 2022
Cow Feeder is a bot automatically execute trade on cowswap

Cow Feeder is a bot automatically execute trade on cowswap, includes functions: Monitoring Ethereum network gas price and execute trade whe

6 Apr 20, 2022
Simples Keylogger para Windows com um autoboot implementado no sistema

MKW Keylogger Keylogger simples para Windos com um autoboot implementado no sistema, o malware irá capturar pressionamentos de tecla e armazená-lo em

3 Jul 03, 2021