praudio provides audio preprocessing framework for Deep Learning audio applications

Related tags

Audiopraudio
Overview

README

praudio provides objects and a script for performing complex preprocessing operations on entire audio datasets with one command.

praudio is implemented having Deep Learning audio/music applications in mind.

Operations are carried out on CPU. Preprocessing can also be run on-the-fly, for example, while training a model.

The library uses librosa as an audio processing backend.

How do I install the library?

You can install praudio both with pip via PyPi, and by cloning the praudio repo from GitHub.

For both approaches, it's advisable to use a dedicated Python virtual environment.

Installing from PyPi

Installing from PyPi is the easiest option. In the terminal type:

$ pip install praudio

Installing from GitHub

First, you should clone the repository from GitHub:

$ git clone [email protected]:musikalkemist/praudio.git

Then, move to the project root and, to install the package, type in the terminal:

$ pip install .

You can also use a rule in the available Makefile (see below):

$ make install 

To install the package in development mode use:

$ pip install -e .[testing]

You can also use a rule in Makefile:

$ make install_dev 

This will install all the packages necessary to run the tests, lint, type checker. It will also install the package in 'editable' mode, which is ideal for development.

Python version

praudio works in Python 3.6, 3.7, 3.8.

How do I preprocess an audio dataset?

The core of the library is the preprocess entry point. This script works with a config file. You set the type of preprocessing you want to apply in a yaml file, and then run the script. Your dataset will be entirely preprocessed and the results recursively stored in a directory of your choice that can potentially be created from scratch.

To run the entry point, ensure the library is installed and then type:

$ preprocess /path/to/config.yml

In the config.yml, you should provide the following parameters:

  • dataset_dir: Path to the directory where your audio dataset is stored
  • save_dir: Path where to save the preprocessed audio.
  • Under file_preprocessor, you should provide settings for loader and transforms_chain.
  • loader: Provide settings for the loader.
  • transforms_chain: Parameters for each transform in the sequence. of transforms which are applied to your data (i.e., TransformChain).

These config parameters are used to dinamically initialise the relative objects in the library. To learn what parameters are available at each level in the config file, please refer to the docstrings in the relative objects.

Check out test/config.sampleconfig.yml to see an example of a valid config file.

Package structure

The package is divided into a number of subpackages:

  • config
  • creation
  • io
  • preprocessors
  • transforms

config has facilities to load, save, and validate configuration files, which are used to specify the types of preprocessing pipelines to use.

creation has classes that are responsible to instantiate key objects in the library.

io contains facilities to load / save audio signals from / to files.

preprocessors features objects which are responsible to preprocess single audio files, from loading to storing, as well as, batch of files.

transforms contains a series of objects which manipulate audio signals, such as short-time Fourier transform, log, scaling.

What's the Makefile for?

The Makefile has a series of rules that can be used to ensure quality of the code, and automate repetitive tasks.

Linter

The project uses pylint. The linter helps enforcing a coding standard, sniffs for code smells and offers simple refactoring suggestions.

To run the linter type:

$ make lint

Typehint

The project uses mypy. mypy is an optional static type checker for Python. You can add type hints (PEP 484) to your Python programs, and use mypy to type check them statically.

To run the type checker type:

$ make typehint

Testing

The project uses pytest for unittests. Tests can be run in one go using coverage. This package suggests the percentage of code that is covered in unittests.

To run all the unittests type:

$ make test

Checklist

Checklist is a utility rule that runs the linter, type checker, and the test suite in one go:

$ make checklist

Clean

Use the clean rule to get rid of pyc files and __pychache__:

$ make clean

Dependencies

praudio has the following dependencies:

  • librosa==0.8.1
  • pyyaml==5.4.1
  • types-PyYAML==5.4.6

librosa is extensively used to extract audio features in transform objects.

Current limitations

The praudio preprocessors are capable of operating only on mono signals. This is a significant limitation if you are working in generative music. If you are using the library for audio / music analysis, this shouldn't be a problem.

Future improvements

  • Add audio augmentation / padding / cropping transforms.
  • Enable preprocessing of signals with multiple channels.
  • Turn transform parameters into full-fledged objects (e.g., STFTParams)
  • Instead of using a dictionary for configurations, instantiate parameter objects with validation
  • Implement different types of Savers / Loaders with factories to produce them.
Owner
Valerio Velardo
AI audio/music researcher. Love Python.
Valerio Velardo
An audio guide for destroying oracles in Destiny's Vault of Glass raid

prophet An audio guide for destroying oracles in Destiny's Vault of Glass raid. This project allows you to make any encounter with oracles without hav

24 Sep 15, 2022
A lightweight yet powerful audio-to-MIDI converter with pitch bend detection

Basic Pitch is a Python library for Automatic Music Transcription (AMT), using lightweight neural network developed by Spotify's Audio Intelligence La

Spotify 1.4k Jan 01, 2023
Marsyas - Music Analysis, Retrieval and Synthesis for Audio Signals

Welcome to MARSYAS. MARSYAS is a software framework for rapid prototyping of audio applications, with flexibility and extensibility as primary concer

Marsyas Developers Group 364 Oct 31, 2022
Synchronize a local directory of songs' (MP3, MP4) metadata (genre, ratings) and playlists with a Plex server.

PlexMusicSync Synchronize a local directory of songs' (MP3, MP4) metadata (genre, ratings) and playlists (m3u, m3u8) with a Plex server. The song file

Tom Goetz 9 Jul 07, 2022
Python library for handling audio datasets.

AUDIOMATE Audiomate is a library for easy access to audio datasets. It provides the datastructures for accessing/loading different datasets in a gener

Matthias 121 Nov 27, 2022
Tune in is a Collaborative Music Playing Systems where multiple guests can join a room and enjoy the song being played

✨A collaborative music playing systems🎶 where multiple guests can join a room ➡🚪 and enjoy the song🎧 being played.

Vedansh Vijaywargiya 8 Nov 05, 2022
Sync Toolbox - Python package with reference implementations for efficient, robust, and accurate music synchronization based on dynamic time warping (DTW)

Sync Toolbox - Python package with reference implementations for efficient, robust, and accurate music synchronization based on dynamic time warping (DTW)

Meinard Mueller 66 Jan 02, 2023
Speech Algorithms Collections

Speech Algorithms Collections

Ryuk 498 Jan 06, 2023
Royal Music You can play music and video at a time in vc

Royals-Music Royal Music You can play music and video at a time in vc Commands SOON String STRING_SESSION Deployment 🎖 Credits • 🇸ᴏᴍʏᴀ⃝🇯ᴇᴇᴛ • 🇴ғғɪ

2 Nov 23, 2021
Improved Python UI to convert Youtube URL to .mp3 file.

YT-MP3 Improved Python UI to convert Youtube URL to .mp3 file. How to use? Just run python3 main.py Enter the URL of the video Enter the PATH of where

8 Jun 19, 2022
Minimal command-line music player written in Python

pyms Minimal command-line music player written in Python. Designed with elegance and minimalism. Resizes dynamically with your terminal. Dependencies

12 Sep 23, 2022
All-In-One Digital Audio Workstation and Plugin Suite

How to install Windows Mac OS X Fedora Ubuntu How to Build Debian and Ubuntu Fedora All Other Linux Distros Mac OS X Windows What is MusiKernel? MusiK

j3ffhubb 111 Sep 21, 2021
a library for audio and music analysis

aubio aubio is a library to label music and sounds. It listens to audio signals and attempts to detect events. For instance, when a drum is hit, at wh

aubio 2.9k Dec 30, 2022
DCL - An easy to use diacritic library used for diacritic and accent manipulation.

Diacritics Library This library is used for adding, and removing diacritics from strings. Getting started Start by importing the module: import dcl DC

Kreus Amredes 6 Jun 03, 2022
Analysis of voices based on the Mel-frequency band

Speaker_partition_module Analysis of voices based on the Mel-frequency band. Goal: Identification of voices speaking (diarization) and calculation of

1 Feb 06, 2022
Stevan KZ 1 Oct 27, 2021
An audio digital processing toolbox based on a workflow/pipeline principle

AudioTK Audio ToolKit is a set of audio filters. It helps assembling workflows for specific audio processing workloads. The audio workflow is split in

Matthieu Brucher 238 Oct 18, 2022
In this project we can see how we can generate automatic music using character RNN.

Automatic Music Genaration Table of Contents Project Description Approach towards the problem Limitations Libraries Used Summary Applications Referenc

Pronay Ghosh 2 May 27, 2022
A useful tool to generate chord progressions according to melody MIDIs

Auto chord generator, pure python package that generate chord progressions according to given melodies

Billy Yi 53 Dec 30, 2022
Implementation of "Slow-Fast Auditory Streams for Audio Recognition, ICASSP, 2021" in PyTorch

Auditory Slow-Fast This repository implements the model proposed in the paper: Evangelos Kazakos, Arsha Nagrani, Andrew Zisserman, Dima Damen, Slow-Fa

Evangelos Kazakos 57 Dec 07, 2022