A plug-and-play library for neural networks written in Python

Overview

Synapses

A plug-and-play library for neural networks written in Python!

# run
pip install synapses-py==7.4.1
# in the directory of your project

Neural Network

Create a neural network

Import Synapses, call NeuralNetwork.init and provide the size of each layer.

from synapses_py import NeuralNetwork, ActivationFunction, DataPreprocessor, Statistics
layers = [4, 6, 5, 3]
neuralNetwork = NeuralNetwork.init(layers)

neuralNetwork has 4 layers. The first layer has 4 input nodes and the last layer has 3 output nodes. There are 2 hidden layers with 6 and 5 neurons respectively.

Get a prediction

inputValues = [1.0, 0.5625, 0.511111, 0.47619]
prediction = \
        NeuralNetwork.prediction(neuralNetwork, inputValues)

prediction should be something like [ 0.8296, 0.6996, 0.4541 ].

Note that the lengths of inputValues and prediction equal to the sizes of input and output layers respectively.

Fit network

learningRate = 0.5
expectedOutput = [0.0, 1.0, 0.0]
fitNetwork = \
        NeuralNetwork.fit(
            neuralNetwork,
            learningRate,
            inputValues,
            expectedOutput
        )

fitNetwork is a new neural network trained with a single observation.

To train a neural network, you should fit with multiple datapoints

Create a customized neural network

The activation function of the neurons created with NeuralNetwork.init, is a sigmoid one. If you want to customize the activation functions and the weight distribution, call NeuralNetwork.customizedInit.

def activationF(layerIndex):
    if layerIndex == 0:
        return ActivationFunction.sigmoid
    elif layerIndex == 1:
        return ActivationFunction.identity
    elif layerIndex == 2:
        return ActivationFunction.leakyReLU
    else:
        return ActivationFunction.tanh

def weightInitF(_layerIndex):
    return 1.0 - 2.0 * random()

customizedNetwork = \
        NeuralNetwork.customizedInit(
            layers,
            activationF,
            weightInitF
        )

Visualization

Call NeuralNetwork.toSvg to take a brief look at its svg drawing.

Network Drawing

The color of each neuron depends on its activation function while the transparency of the synapses depends on their weight.

svg = NeuralNetwork.toSvg(customizedNetwork)

Save and load a neural network

JSON instances are compatible across platforms! We can generate, train and save a neural network in Python and then load and make predictions in Javascript!

toJson

Call NeuralNetwork.toJson on a neural network and get a string representation of it. Use it as you like. Save json in the file system or insert into a database table.

json = NeuralNetwork.toJson(customizedNetwork)

ofJson

loadedNetwork = NeuralNetwork.ofJson(json)

As the name suggests, NeuralNetwork.ofJson turns a json string into a neural network.

Encoding and decoding

One hot encoding is a process that turns discrete attributes into a list of 0.0 and 1.0. Minmax normalization scales continuous attributes into values between 0.0 and 1.0. You can use DataPreprocessor for datapoint encoding and decoding.

The first parameter of DataPreprocessor.init is a list of tuples (attributeName, discreteOrNot).

setosaDatapoint = {
    "petal_length": "1.5",
    "petal_width": "0.1",
    "sepal_length": "4.9",
    "sepal_width": "3.1",
    "species": "setosa"
}

versicolorDatapoint = {
    "petal_length": "3.8",
    "petal_width": "1.1",
    "sepal_length": "5.5",
    "sepal_width": "2.4",
    "species": "versicolor"
}

virginicaDatapoint = {
    "petal_length": "6.0",
    "petal_width": "2.2",
    "sepal_length": "5.0",
    "sepal_width": "1.5",
    "species": "virginica"
}

datasetList = [ setosaDatapoint,
                versicolorDatapoint,
                virginicaDatapoint ]

dataPreprocessor = \
        DataPreprocessor.init(
             [ ("petal_length", False),
               ("petal_width", False),
               ("sepal_length", False),
               ("sepal_width", False),
               ("species", True) ],
             iter(datasetList)
        )

encodedDatapoints = map(lambda x:
        DataPreprocessor.encodedDatapoint(dataPreprocessor, x),
        datasetList
)

encodedDatapoints equals to:

[ [ 0.0     , 0.0     , 0.0     , 1.0     , 0.0, 0.0, 1.0 ],
  [ 0.511111, 0.476190, 1.0     , 0.562500, 0.0, 1.0, 0.0 ],
  [ 1.0     , 1.0     , 0.166667, 0.0     , 1.0, 0.0, 0.0 ] ]

Save and load the preprocessor by calling DataPreprocessor.toJson and DataPreprocessor.ofJson.

Evaluation

To evaluate a neural network, you can call Statistics.rootMeanSquareError and provide the expected and predicted values.

expectedWithOutputValuesList = \
        [ ( [ 0.0, 0.0, 1.0], [ 0.0, 0.0, 1.0] ),
          ( [ 0.0, 0.0, 1.0], [ 0.0, 1.0, 1.0] ) ]

expectedWithOutputValuesIter = \
        iter(expectedWithOutputValuesList)

rmse = Statistics.rootMeanSquareError(
                        expectedWithOutputValuesIter
)
Owner
Dimos Michailidis
Dimos Michailidis
Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming

Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming. Outperforming `GPT-3` on SuperGLUE Few-Shot text classification.

YerevaNN 75 Nov 06, 2022
PoseViz – Multi-person, multi-camera 3D human pose visualization tool built using Mayavi.

PoseViz – 3D Human Pose Visualizer Multi-person, multi-camera 3D human pose visualization tool built using Mayavi. As used in MeTRAbs visualizations.

István Sárándi 79 Dec 30, 2022
Code for the Convolutional Vision Transformer (ConViT)

ConViT : Vision Transformers with Convolutional Inductive Biases This repository contains PyTorch code for ConViT. It builds on code from the Data-Eff

Facebook Research 418 Jan 06, 2023
Code base for the paper "Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation"

This repository contains code for the paper Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiati

8 Aug 28, 2022
Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather

LiDAR fog simulation Created by Martin Hahner at the Computer Vision Lab of ETH Zurich. This is the official code release of the paper Fog Simulation

Martin Hahner 110 Dec 30, 2022
Code for the paper "There is no Double-Descent in Random Forests"

Code for the paper "There is no Double-Descent in Random Forests" This repository contains the code to run the experiments for our paper called "There

2 Jan 14, 2022
Official implementation of VQ-Diffusion

Vector Quantized Diffusion Model for Text-to-Image Synthesis Overview This is the official repo for the paper: [Vector Quantized Diffusion Model for T

Microsoft 592 Jan 03, 2023
Template repository to build PyTorch projects from source on any version of PyTorch/CUDA/cuDNN.

The Ultimate PyTorch Source-Build Template Translations: 한국어 TL;DR PyTorch built from source can be x4 faster than a naïve PyTorch install. This repos

Joonhyung Lee/이준형 651 Dec 12, 2022
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
This repository contains the source code of our work on designing efficient CNNs for computer vision

Efficient networks for Computer Vision This repo contains source code of our work on designing efficient networks for different computer vision tasks:

Sachin Mehta 386 Nov 26, 2022
Examples of how to create colorful, annotated equations in Latex using Tikz.

The file "eqn_annotate.tex" is the main latex file. This repository provides four examples of annotated equations: [example_prob.tex] A simple one ins

SyNeRCyS Research Lab 3.2k Jan 05, 2023
Official Pytorch implementation of "Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)

Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021) Official Pytorch implementation of Unbiased Classification

Youngkyu 17 Jan 01, 2023
A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want.

sne4onnx A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or

Katsuya Hyodo 10 Aug 30, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
[CVPR 2022] Structured Sparse R-CNN for Direct Scene Graph Generation

Structured Sparse R-CNN for Direct Scene Graph Generation Our paper Structured Sparse R-CNN for Direct Scene Graph Generation has been accepted by CVP

Multimedia Computing Group, Nanjing University 44 Dec 23, 2022
Implementation of Convolutional LSTM in PyTorch.

ConvLSTM_pytorch This file contains the implementation of Convolutional LSTM in PyTorch made by me and DavideA. We started from this implementation an

Andrea Palazzi 1.3k Dec 29, 2022
A python package for generating, analyzing and visualizing building shadows

pybdshadow Introduction pybdshadow is a python package for generating, analyzing and visualizing building shadows from large scale building geographic

Qing Yu 13 Nov 30, 2022
This is the repository for the paper "Have I done enough planning or should I plan more?"

Metacognitive Learning Tool box https://re.is.mpg.de What Is This? This repository contains two modules used to analyse metacognitive learning in huma

0 Dec 01, 2021
This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametric Head Model (CVPR 2022)".

HeadNeRF: A Real-time NeRF-based Parametric Head Model This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametr

294 Jan 01, 2023
Deep learning library for solving differential equations and more

DeepXDE Voting on whether we should have a Slack channel for discussion. DeepXDE is a library for scientific machine learning. Use DeepXDE if you need

Lu Lu 1.4k Dec 29, 2022