Implementation of the state-of-the-art vision transformers with tensorflow

Overview

ViT Tensorflow

This repository contains the tensorflow implementation of the state-of-the-art vision transformers (a category of computer vision models first introduced in An Image is worth 16 x 16 words). This repository is inspired from the work of lucidrains which is vit-pytorch. I hope you enjoy these implementations :)

Models

Requirements

pip install tensorflow

Vision Transformer

Vision transformer was introduced in An Image is worth 16 x 16 words. This model uses a Transformer encoder to classify images with pure attention and no convolution.

Usage

Defining the Model

from vit import ViT
import tensorflow as tf

vitClassifier = ViT(
                    num_classes=1000,
                    patch_size=16,
                    num_of_patches=(224//16)**2,
                    d_model=128,
                    heads=2,
                    num_layers=4,
                    mlp_rate=2,
                    dropout_rate=0.1,
                    prediction_dropout=0.3,
)
Params
  • num_classes: int
    number of classes used for the final classification head
  • patch_size: int
    patch_size used for the tokenization
  • num_of_patches: int
    number of patches after the tokenization which is used for the positional encoding, Generally it can be computed by the following formula (((h-patch_size)//patch_size) + 1)*(((w-patch_size)//patch_size) + 1) where h is the height of the image and w is the width of the image. In addition, when height and width of the image are devisable by the patch_size the following formula can be used as well (h//patch_size)*(w//patch_size)
  • d_model: int
    hidden dimension of the transformer encoder and the demnesion used for patch embedding
  • heads: int
    number of heads used for the multi-head attention mechanism
  • num_layers: int
    number of blocks in encoder transformer
  • mlp_rate: int
    the rate of expansion in the feed-forward block of each transformer block (the dimension after expansion is mlp_rate * d_model)
  • dropout_rate: float
    dropout rate used in the multi-head attention mechanism
  • prediction_dropout: float
    dropout rate used in the final prediction head of the model

Inference

sampleInput = tf.random.normal(shape=(1 , 224 , 224 , 3))
output = vitClassifier(sampleInput , training=False)
print(output.shape) # (1 , 1000)

Training

vitClassifier.compile(
              loss=tf.keras.losses.SparseCategoricalCrossentropy(),
              optimizer=tf.keras.optimizers.Adam(learning_rate=0.001),
              metrics=[
                       tf.keras.metrics.SparseCategoricalAccuracy(name="accuracy"),
                       tf.keras.metrics.SparseTopKCategoricalAccuracy(k=5 , name="top_5_accuracy"),
              ])

vitClassifier.fit(
              trainingData, #Tensorflow dataset of images and labels in shape of ((b , h , w , 3) , (b,))
              validation_data=valData, #The same as training
              epochs=100,)

Convolutional Vision Transformer

Convolutional Vision Transformer was introduced in here. This model uses a hierarchical (multi-stage) architecture with convolutional embeddings in the begining of each stage. it also uses Convolutional Transformer Blocks to improve the orginal vision transformer by adding CNNs inductive bias into the architecture.

Usage

Defining the Model

from cvt import CvT , CvTStage
import tensorflow as tf

cvtModel = CvT(
num_of_classes=1000, 
stages=[
        CvTStage(projectionDim=64, 
                 heads=1, 
                 embeddingWindowSize=(7 , 7), 
                 embeddingStrides=(4 , 4), 
                 layers=1,
                 projectionWindowSize=(3 , 3), 
                 projectionStrides=(2 , 2), 
                 ffnRate=4,
                 dropoutRate=0.1),
        CvTStage(projectionDim=192,
                 heads=3,
                 embeddingWindowSize=(3 , 3), 
                 embeddingStrides=(2 , 2),
                 layers=1, 
                 projectionWindowSize=(3 , 3), 
                 projectionStrides=(2 , 2), 
                 ffnRate=4,
                 dropoutRate=0.1),
        CvTStage(projectionDim=384,
                 heads=6,
                 embeddingWindowSize=(3 , 3),
                 embeddingStrides=(2 , 2),
                 layers=1,
                 projectionWindowSize=(3 , 3),
                 projectionStrides=(2 , 2), 
                 ffnRate=4,
                 dropoutRate=0.1)
],
dropout=0.5)
CvT Params
  • num_of_classes: int
    number of classes used in the final prediction layer
  • stages: list of CvTStage
    list of cvt stages
  • dropout: float
    dropout rate used for the prediction head
CvTStage Params
  • projectionDim: int
    dimension used for the multi-head attention mechanism and the convolutional embedding
  • heads: int
    number of heads in the multi-head attention mechanism
  • embeddingWindowSize: tuple(int , int)
    window size used for the convolutional emebdding
  • embeddingStrides: tuple(int , int)
    strides used for the convolutional embedding
  • layers: int
    number of convolutional transformer blocks
  • projectionWindowSize: tuple(int , int)
    window size used for the convolutional projection in each convolutional transformer block
  • projectionStrides: tuple(int , int)
    strides used for the convolutional projection in each convolutional transformer block
  • ffnRate: int
    expansion rate of the mlp block in each convolutional transformer block
  • dropoutRate: float
    dropout rate used in each convolutional transformer block

Inference

sampleInput = tf.random.normal(shape=(1 , 224 , 224 , 3))
output = cvtModel(sampleInput , training=False)
print(output.shape) # (1 , 1000)

Training

cvtModel.compile(
        loss=tf.keras.losses.SparseCategoricalCrossentropy(),
        optimizer=tf.keras.optimizers.Adam(learning_rate=0.001),
        metrics=[
                 tf.keras.metrics.SparseCategoricalAccuracy(name="accuracy"),
                 tf.keras.metrics.SparseTopKCategoricalAccuracy(k=5 , name="top_5_accuracy"),
        ])

cvtModel.fit(
        trainingData, #Tensorflow dataset of images and labels in shape of ((b , h , w , 3) , (b,))
        validation_data=valData, #The same as training
        epochs=100,)

Pyramid Vision Transformer V1

Pyramid Vision Transformer V1 was introduced in here. This model stacks multiple Transformer Encoders to form the first convolution-free multi-scale backbone for various visual tasks including Image Segmentation , Object Detection and etc. In addition to this a new attention mechanism called Spatial Reduction Attention (SRA) is also introduced in this paper to reduce the quadratic complexity of the multi-head attention mechansim.

Usage

Defining the Model

from pvt_v1 import PVT , PVTStage
import tensorflow as tf

pvtModel = PVT(
num_of_classes=1000, 
stages=[
        PVTStage(d_model=64,
                 patch_size=(2 , 2),
                 heads=1,
                 reductionFactor=2,
                 mlp_rate=2,
                 layers=2, 
                 dropout_rate=0.1),
        PVTStage(d_model=128,
                 patch_size=(2 , 2),
                 heads=2, 
                 reductionFactor=2, 
                 mlp_rate=2, 
                 layers=2, 
                 dropout_rate=0.1),
        PVTStage(d_model=320,
                 patch_size=(2 , 2),
                 heads=5, 
                 reductionFactor=2, 
                 mlp_rate=2, 
                 layers=2, 
                 dropout_rate=0.1),
],
dropout=0.5)
PVT Params
  • num_of_classes: int
    number of classes used in the final prediction layer
  • stages: list of PVTStage
    list of pvt stages
  • dropout: float
    dropout rate used for the prediction head
PVTStage Params
  • d_model: int
    dimension used for the SRA mechanism and the patch embedding
  • patch_size: tuple(int , int)
    window size used for the patch emebdding
  • heads: int
    number of heads in the SRA mechanism
  • reductionFactor: int
    reduction factor used for the down sampling of the K and V in the SRA mechanism
  • mlp_rate: int
    expansion rate used in the feed-forward block
  • layers: int
    number of transformer encoders
  • dropout_rate: float
    dropout rate used in each transformer encoder

Inference

sampleInput = tf.random.normal(shape=(1 , 224 , 224 , 3))
output = pvtModel(sampleInput , training=False)
print(output.shape) # (1 , 1000)

Training

pvtModel.compile(
        loss=tf.keras.losses.SparseCategoricalCrossentropy(),
        optimizer=tf.keras.optimizers.Adam(learning_rate=0.001),
        metrics=[
                 tf.keras.metrics.SparseCategoricalAccuracy(name="accuracy"),
                 tf.keras.metrics.SparseTopKCategoricalAccuracy(k=5 , name="top_5_accuracy"),
        ])

pvtModel.fit(
        trainingData, #Tensorflow dataset of images and labels in shape of ((b , h , w , 3) , (b,))
        validation_data=valData, #The same as training
        epochs=100,)

Pyramid Vision Transformer V2

Pyramid Vision Transformer V2 was introduced in here. This model is an improved version of the PVT V1. The improvements of this version are as follows:

  1. It uses overlapping patch embedding by using padded convolutions
  2. It uses convolutional feed-forward blocks which have a depth-wise convolution after the first fully-connected layer
  3. It uses a fixed pooling instead of convolutions for down sampling the K and V in the SRA attention mechanism (The new attention mechanism is called Linear SRA)

Usage

Defining the Model

from pvt_v2 import PVTV2 , PVTV2Stage
import tensorflow as tf

pvtV2Model = PVTV2(
num_of_classes=1000, 
stages=[
        PVTV2Stage(d_model=64,
                   windowSize=(2 , 2), 
                   heads=1,
                   poolingSize=(7 , 7), 
                   mlp_rate=2, 
                   mlp_windowSize=(3 , 3), 
                   layers=2, 
                   dropout_rate=0.1),
        PVTV2Stage(d_model=128, 
                   windowSize=(2 , 2),
                   heads=2,
                   poolingSize=(7 , 7), 
                   mlp_rate=2, 
                   mlp_windowSize=(3 , 3), 
                   layers=2,
                   dropout_rate=0.1),
        PVTV2Stage(d_model=320,
                   windowSize=(2 , 2), 
                   heads=5, 
                   poolingSize=(7 , 7), 
                   mlp_rate=2, 
                   mlp_windowSize=(3 , 3), 
                   layers=2, 
                   dropout_rate=0.1),
],
dropout=0.5)
PVT Params
  • num_of_classes: int
    number of classes used in the final prediction layer
  • stages: list of PVTV2Stage
    list of pvt v2 stages
  • dropout: float
    dropout rate used for the prediction head
PVTStage Params
  • d_model: int
    dimension used for the Linear SRA mechanism and the convolutional patch embedding
  • windowSize: tuple(int , int)
    window size used for the convolutional patch emebdding
  • heads: int
    number of heads in the Linear SRA mechanism
  • poolingSize: tuple(int , int)
    size of the K and V after the fixed pooling
  • mlp_rate: int
    expansion rate used in the convolutional feed-forward block
  • mlp_windowSize: tuple(int , int)
    the window size used for the depth-wise convolution in the convolutional feed-forward block
  • layers: int
    number of transformer encoders
  • dropout_rate: float
    dropout rate used in each transformer encoder

Inference

sampleInput = tf.random.normal(shape=(1 , 224 , 224 , 3))
output = pvtV2Model(sampleInput , training=False)
print(output.shape) # (1 , 1000)

Training

pvtV2Model.compile(
          loss=tf.keras.losses.SparseCategoricalCrossentropy(),
          optimizer=tf.keras.optimizers.Adam(learning_rate=0.001),
          metrics=[
                   tf.keras.metrics.SparseCategoricalAccuracy(name="accuracy"),
                   tf.keras.metrics.SparseTopKCategoricalAccuracy(k=5 , name="top_5_accuracy"),
          ])

pvtV2Model.fit(
          trainingData, #Tensorflow dataset of images and labels in shape of ((b , h , w , 3) , (b,))
          validation_data=valData, #The same as training
          epochs=100,)

DeiT

DeiT was introduced in Training Data-Efficient Image Transformers & Distillation Through Attention. Since original vision transformer is data hungry due to the lack of existance of any inductive bias (unlike CNNs) a lot of data is required to train original vision transformer in order to surpass the state-of-the-art CNNs such as Resnet. Therefore, in this paper authors used a pre-trained CNN such as resent during training and used a sepcial loss function to perform distillation through attention.

Usage

Defining the Model

from deit import DeiT
import tensorflow as tf

teacherModel = tf.keras.applications.ResNet50(include_top=True, 
                                              weights="imagenet", 
                                              input_shape=(224 , 224 , 3))

deitModel = DeiT(
                 num_classes=1000,
                 patch_size=16,
                 num_of_patches=(224//16)**2,
                 d_model=128,
                 heads=2,
                 num_layers=4,
                 mlp_rate=2,
                 teacherModel=teacherModel,
                 temperature=1.0, 
                 alpha=0.5,
                 hard=False, 
                 dropout_rate=0.1,
                 prediction_dropout=0.3,
)
Params
  • num_classes: int
    number of classes used for the final classification head
  • patch_size: int
    patch_size used for the tokenization
  • num_of_patches: int
    number of patches after the tokenization which is used for the positional encoding, Generally it can be computed by the following formula (((h-patch_size)//patch_size) + 1)*(((w-patch_size)//patch_size) + 1) where h is the height of the image and w is the width of the image. In addition, when height and width of the image are devisable by the patch_size the following formula can be used as well (h//patch_size)*(w//patch_size)
  • d_model: int
    hidden dimension of the transformer encoder and the demnesion used for patch embedding
  • heads: int
    number of heads used for the multi-head attention mechanism
  • num_layers: int
    number of blocks in encoder transformer
  • mlp_rate: int
    the rate of expansion in the feed-forward block of each transformer block (the dimension after expansion is mlp_rate * d_model)
  • teacherModel: Tensorflow Model
    the teacherModel used for the distillation during training, This model is a pre-trained CNN model with the same input_shape and output_shape as the Transformer
  • temperature: float
    the temperature parameter in the loss
  • alpha: float
    the coefficient balancing the Kullback–Leibler divergence loss (KL) and the cross-entropy loss
  • hard: bool
    indicates using Hard-label distillation or Soft distillation
  • dropout_rate: float
    dropout rate used in the multi-head attention mechanism
  • prediction_dropout: float
    dropout rate used in the final prediction head of the model

Inference

sampleInput = tf.random.normal(shape=(1 , 224 , 224 , 3))
output = deitModel(sampleInput , training=False)
print(output.shape) # (1 , 1000)

Training

#Note that the loss is defined inside the model and no loss should be passed here
deitModel.compile(
         optimizer=tf.keras.optimizers.Adam(learning_rate=0.001),
         metrics=[
                  tf.keras.metrics.SparseCategoricalAccuracy(name="accuracy"),
                  tf.keras.metrics.SparseTopKCategoricalAccuracy(k=5 , name="top_5_accuracy"),
         ])

deitModel.fit(
         trainingData, #Tensorflow dataset of images and labels in shape of ((b , h , w , 3) , (b , num_classes))
         validation_data=valData, #The same as training
         epochs=100,)
Owner
Mohammadmahdi NouriBorji
Mohammadmahdi NouriBorji
[CVPR'2020] DeepDeform: Learning Non-rigid RGB-D Reconstruction with Semi-supervised Data

DeepDeform (CVPR'2020) DeepDeform is an RGB-D video dataset containing over 390,000 RGB-D frames in 400 videos, with 5,533 optical and scene flow imag

Aljaz Bozic 165 Jan 09, 2023
A collection of IPython notebooks covering various topics.

ipython-notebooks This repo contains various IPython notebooks I've created to experiment with libraries and work through exercises, and explore subje

John Wittenauer 2.6k Jan 01, 2023
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

RAVE: Realtime Audio Variational autoEncoder Official implementation of RAVE: A variational autoencoder for fast and high-quality neural audio synthes

ACIDS 587 Jan 01, 2023
A simple Tensorflow based library for deep and/or denoising AutoEncoder.

libsdae - deep-Autoencoder & denoising autoencoder A simple Tensorflow based library for Deep autoencoder and denoising AE. Library follows sklearn st

Rajarshee Mitra 147 Nov 18, 2022
project page for VinVL

VinVL: Revisiting Visual Representations in Vision-Language Models Updates 02/28/2021: Project page built. Introduction This repository is the project

308 Jan 09, 2023
Unofficial implementation of the Involution operation from CVPR 2021

involution_pytorch Unofficial PyTorch implementation of "Involution: Inverting the Inherence of Convolution for Visual Recognition" by Li et al. prese

Rishabh Anand 46 Dec 07, 2022
PyTorch CZSL framework containing GQA, the open-world setting, and the CGE and CompCos methods.

Compositional Zero-Shot Learning This is the official PyTorch code of the CVPR 2021 works Learning Graph Embeddings for Compositional Zero-shot Learni

EML Tübingen 70 Dec 27, 2022
HNECV: Heterogeneous Network Embedding via Cloud model and Variational inference

HNECV This repository provides a reference implementation of HNECV as described in the paper: HNECV: Heterogeneous Network Embedding via Cloud model a

4 Jun 28, 2022
Management Dashboard for Torchserve

Torchserve Dashboard Torchserve Dashboard using Streamlit Related blog post Usage Additional Requirement: torchserve (recommended:v0.5.2) Simply run:

Ceyda Cinarel 103 Dec 10, 2022
SAAVN - Sound Adversarial Audio-Visual Navigation,ICLR2022 (In PyTorch)

SAAVN SAAVN Code release for paper "Sound Adversarial Audio-Visual Navigation,IC

YinfengYu 10 Aug 30, 2022
3rd Place Solution for ICCV 2021 Workshop SSLAD Track 3A - Continual Learning Classification Challenge

Online Continual Learning via Multiple Deep Metric Learning and Uncertainty-guided Episodic Memory Replay 3rd Place Solution for ICCV 2021 Workshop SS

Rifki Kurniawan 6 Nov 10, 2022
PyTorch implementation of Constrained Policy Optimization

PyTorch implementation of Constrained Policy Optimization (CPO) This repository has a simple to understand and use implementation of CPO in PyTorch. A

Sapana Chaudhary 25 Dec 08, 2022
Weighted K Nearest Neighbors (kNN) algorithm implemented on python from scratch.

kNN_From_Scratch I implemented the k nearest neighbors (kNN) classification algorithm on python. This algorithm is used to predict the classes of new

1 Dec 14, 2021
Individual Tree Crown classification on WorldView-2 Images using Autoencoder -- Group 9 Weak learners - Final Project (Machine Learning 2020 Course)

Created by Olga Sutyrina, Sarah Elemili, Abduragim Shtanchaev and Artur Bille Individual Tree Crown classification on WorldView-2 Images using Autoenc

2 Dec 08, 2022
A generator of point clouds dataset for PyPipes.

CloudPipesGenerator Documentation | Colab Notebooks | Video Tutorials | Master Degree website A generator of point clouds dataset for PyPipes. TODO Us

1 Jan 13, 2022
The devkit of the nuPlan dataset.

The devkit of the nuPlan dataset.

Motional 264 Jan 03, 2023
Implementation of ETSformer, state of the art time-series Transformer, in Pytorch

ETSformer - Pytorch Implementation of ETSformer, state of the art time-series Transformer, in Pytorch Install $ pip install etsformer-pytorch Usage im

Phil Wang 121 Dec 30, 2022
Analyzing basic network responses to novel classes

novelty-detection Analyzing how AlexNet responds to novel classes with varying degrees of similarity to pretrained classes from ImageNet. If you find

Noam Eshed 34 Oct 02, 2022
An Open-Source Tool for Automatic Disease Diagnosis..

OpenMedicalChatbox An Open-Source Package for Automatic Disease Diagnosis. Overview Due to the lack of open source for existing RL-base automated diag

8 Nov 08, 2022
Tree LSTM implementation in PyTorch

Tree-Structured Long Short-Term Memory Networks This is a PyTorch implementation of Tree-LSTM as described in the paper Improved Semantic Representati

Riddhiman Dasgupta 529 Dec 10, 2022