Unofficial Python library for using the Polish Wordnet (plWordNet / Słowosieć)

Overview

Polish Wordnet Python library

Simple, easy-to-use and reasonably fast library for using the Słowosieć (also known as PlWordNet) - a lexico-semantic database of the Polish language. PlWordNet can also be browsed here.

I created this library, because since version 2.9, PlWordNet cannot be easily loaded into Python (for example with nltk), as it is only provided in a custom plwnxml format.

Usage

Load wordnet from an XML file (this will take about 20 seconds), and print basic statistics.

import plwordnet
wn = plwordnet.load('plwordnet_4_2.xml')
print(wn)

Expected output:

PlWordnet
  lexical units: 513410
  synsets: 353586
  relation types: 306
  synset relations: 1477849
  lexical relations: 393137

Find lexical units with name leśny and print all relations, where where that unit is in the subject/parent position.

for lu in wn.lemmas('leśny'):
    for s, p, o in wn.lexical_relations_where(subject=lu):
        print(p.format(s, o))

Expected output:

leśny.2 tworzy kolokację z polana.1
leśny.2 jest synonimem mpar. do las.1
leśny.3 przypomina las.1
leśny.4 jest derywatem od las.1
leśny.5 jest derywatem od las.1
leśny.6 przypomina las.1

Print all relation types and their ids:

for id, rel in wn.relation_types.items():
    print(id, rel.name)

Expected output:

10 hiponimia
11 hiperonimia
12 antonimia
13 konwersja
...

Installation

Note: plwordnet requires at Python 3.7 or newer.

pip install plwordnet

Version support

This library should be able to read future versions of PlWordNet without modification, even if more relation types are added. Still, if you use this library with a version of PlWordNet that is not listed below, please consider contributing information if it is supported.

  • PlWordNet 4.2
  • PlWordNet 4.0
  • PlWordNet 3.2
  • PlWordNet 3.0
  • PlWordNet 2.3
  • PlWordNet 2.2
  • PlWordNet 2.1

Documentation

See plwordnet/wordnet.py for RelationType, Synset and LexicalUnit class definitions.

Package functions

  • load(source): Reads PlWordNet, where src is a path to the wordnet XML file, or a path to the pickled wordnet object. Passed paths can point to files compressed with gzip or lzma.

Wordnet instance properties

  • lexical_relations: List of (subject, predicate, object) triples
  • synset_relations: List of (subject, predicate, object) triples
  • relation_types: Mapping from relation type id to object
  • lexical_units: Mapping from lexical unit id to unit object
  • synsets: Mapping from synset id to object
  • (lexical|synset)_relations_(s|o|p): Mapping from id of subject/object/predicate to a set of matching lexical unit/synset relation ids
  • lexical_units_by_name: Mapping from lexical unit name to a set of matching lexical unit ids

Wordnet methods

  • lemmas(value): Returns a list of LexicalUnit, where the name is equal to value
  • lexical_relations_where(subject, predicate, object): Returns lexical relation triples, with matching subject or/and predicate or/and object. Subject, predicate and object arguments can be integer ids or LexicalUnit and RelationType objects.
  • synset_relations_where(subject, predicate, object): Returns synset relation triples, with matching subject or/and predicate or/and object. Subject, predicate and object arguments can be integer ids or Synset and RelationType objects.
  • dump(dst): Pickles the Wordnet object to opened file dst or to a new file with path dst.

RelationType methods

  • format(x, y, short=False): Substitutes x and y into the RelationType display format display. If short, x and y are separated by the short relation name shortcut.
Comments
  • Fix for abstract attribute bug, MAJOR speedup of synset_relations_where

    Fix for abstract attribute bug, MAJOR speedup of synset_relations_where

    Hi Max.

    I've fixed the bug related to abstract attribute of the synset (it was always True, because bool("non-empty-string") is always True)

    I've also speeded up synset_relations_where by order of 3-4 magnitudes.

    opened by dchaplinsky 7
  • Exposing relations in Wordnet class

    Exposing relations in Wordnet class

    This might be a bit an overkill, but it has two advantages.

    First is: image

    Another is that you can rewrite code like this:

    def path_to_top(synset):
        spo = []
        for rel in [11, 107, 171, 172, 199, 212, 213]:
    

    with meaningful names, not numbers

    opened by dchaplinsky 3
  • Domains dict

    Domains dict

    I've used wikipedia (https://en.wikipedia.org/wiki/PlWordNet) to decipher 45 of 54 domains listed on Słowosieć.

    There might be more: image for example, zwz

    Can you try to decipher the rest? My Polish isn't too good (yet ))

    opened by dchaplinsky 3
  • WIP: hypernyms/hyponyms/hypernym_paths routines for WordNet class

    WIP: hypernyms/hyponyms/hypernym_paths routines for WordNet class

    So, here is my attempt. I've used standard python stack for now, will let you know if it caused any problems

    I've tested it on Africa/Afryka with different combinations, all looked sane to me:

    for lu in wn.find("Afryka"):
        for i, pth in enumerate(wn.hypernym_paths(lu.synset, full_searh=True, interlingual=True)):
            print(f"{i + 1}: " + "->".join(str(s) for s in pth))
    

    gave me

    1: {kontynent.2}->{ląd.1 ziemia.4}->{obszar.1 rejon.3 obręb.1}->{przestrzeń.1}
    2: {kontynent.2}->{ląd.1 ziemia.4}->{obszar.1 rejon.3 obręb.1}->{location.1}->{object.1 physical object.1}->{physical entity.1}->{entity.1}
    3: {kontynent.2}->{ląd.1 ziemia.4}->{land.4 dry land.1 earth.3 ground.1 solid ground.1 terra firma.1}->{object.1 physical object.1}->{physical entity.1}->{entity.1}
    

    Sorry, I accidentally blacked your file, so now it has more changes than expected. The important one, though is that:

    +        # For cases like Instance_Hypernym/Instance_Hyponym
    +        for rel in self.relation_types.values():
    +            if rel.inverse is not None and rel.inverse.inverse is None:
    +                rel.inverse.inverse = rel
    
    opened by dchaplinsky 1
  • Question: hypernym/hyponym tree traversal and export

    Question: hypernym/hyponym tree traversal and export

    Hello.

    The next logical step for me is to implement tree traversal and data export. For tree traversal I'd try to stick to the following algorithm:

    • Find the true top-level hypernyms for the english and polish (no interlingual hypernymy)
    • Calculate number of leaves under each top level hypernym (and/or number of LUs under it)
    • For each node calculate the distance from top-level hypernym

    To export I'd like to use the information above and pass some callables for filtering to only export particular nodes/rels. For example, I only need first 3-4 levels of the trees for nouns, that has more than X leaves. This way I'll have a way to export and visualize only parts of the trees I need.

    Speaking of export, I'm looking into graphviz (to basically lay top level ontology on paper) and ttl, but in the format, that is similar to PWN original TTL export.

    I'd like to have your opinion on two things:

    • General approach
    • How to incorporate that into code. It might be a part of Wordnet class, a separate file (maybe under contrib section), an usage example or a separate script which I/we do or don't publish at all
    opened by dchaplinsky 1
  • Separate file and classes for domains, support for bz2 in load helper

    Separate file and classes for domains, support for bz2 in load helper

    Hi Max. I've slightly cleaned up your spreadsheet on domains (replaced TODO and dashes with nones and made POSes compatible to UD POS tagset) and wrapped everything into classes. I've also made two rows out of cwytw / cwyt and moved pl description of adj/adv into english one. I made en fields default ones for str method

    It's up to you to replace str domains in LexicalUnit with instances of Domain class as it's still ok to compare Domain to str

    I've also added support for bz2 in loader helper.

    opened by dchaplinsky 1
  • Include sentiment annotations

    Include sentiment annotations

    PlWordNet 4.2 comes with a supplementary file (słownik_anotacji_emocjonalnej.csv) containing sentiment annotations for lexical units. Users should be able to load and access sentiment data.

    enhancement 
    opened by maxadamski 1
  • Parse the description format

    Parse the description format

    Currently, nothing is done with the description field in Synset and LexicalUnit. Information about the description format comes in PlWordNets readme.

    Parsing should be done lazily to avoid slowing down the initial loading of PlWordNet into memory.

    Example description:

    ##K: og. ##D: owoc (wielopestkowiec) jabłoni. [##P: Jabłka są kształtem zbliżone do kuli, z zagłębieniem na szczycie, z którego wystaje ogonek.] {##L: http://pl.wikipedia.org/wiki/Jab%C5%82ko}
    

    Desired behavior:

    A new (memoized) method rich_description returns the following dict:

    dict(
      qualifier='og.',
      definition='owoc (wielopestkowiec) jabłoni.',
      examples=['Jabłka są kształtem zbliżone do kuli, z zagłębieniem na szczycie, z którego wystaje ogonek'],
      sources=['http://pl.wikipedia.org/wiki/Jab%C5%82ko'])
    
    enhancement 
    opened by maxadamski 1
Releases(0.1.5)
Owner
Max Adamski
Student of AI @ PUT
Max Adamski
Examples of using sparse attention, as in "Generating Long Sequences with Sparse Transformers"

Status: Archive (code is provided as-is, no updates expected) Update August 2020: For an example repository that achieves state-of-the-art modeling pe

OpenAI 1.3k Dec 28, 2022
Training code of Spatial Time Memory Network. Semi-supervised video object segmentation.

Training-code-of-STM This repository fully reproduces Space-Time Memory Networks Performance on Davis17 val set&Weights backbone training stage traini

haochen wang 128 Dec 11, 2022
Visual Automata is a Python 3 library built as a wrapper for Caleb Evans' Automata library to add more visualization features.

Visual Automata Copyright 2021 Lewi Lie Uberg Released under the MIT license Visual Automata is a Python 3 library built as a wrapper for Caleb Evans'

Lewi Uberg 55 Nov 17, 2022
String Gen + Word Checker

Creates random strings and checks if any of them are a real words. Mostly a waste of time ngl but it is cool to see it work and the fact that it can generate a real random word within10sec

1 Jan 06, 2022
Chinese segmentation library

What is loso? loso is a Chinese segmentation system written in Python. It was developed by Victor Lin ( Fang-Pen Lin 82 Jun 28, 2022

🕹 An esoteric language designed so that the program looks like the transcript of a Pokémon battle

PokéBattle is an esoteric language designed so that the program looks like the transcript of a Pokémon battle. Original inspiration and specification

Eduardo Correia 9 Jan 11, 2022
Collection of useful (to me) python scripts for interacting with napari

Napari scripts A collection of napari related tools in various state of disrepair/functionality. Browse_LIF_widget.py This module can be imported, for

5 Aug 15, 2022
Score-Based Point Cloud Denoising (ICCV'21)

Score-Based Point Cloud Denoising (ICCV'21) [Paper] https://arxiv.org/abs/2107.10981 Installation Recommended Environment The code has been tested in

Shitong Luo 79 Dec 26, 2022
This Project is based on NLTK It generates a RANDOM WORD from a predefined list of words, From that random word it read out the word, its meaning with parts of speech , its antonyms, its synonyms

This Project is based on NLTK(Natural Language Toolkit) It generates a RANDOM WORD from a predefined list of words, From that random word it read out the word, its meaning with parts of speech , its

SaiVenkatDhulipudi 2 Nov 17, 2021
This is a project of data parallel that running on NLP tasks.

This is a project of data parallel that running on NLP tasks.

2 Dec 12, 2021
BERN2: an advanced neural biomedical namedentity recognition and normalization tool

BERN2 We present BERN2 (Advanced Biomedical Entity Recognition and Normalization), a tool that improves the previous neural network-based NER tool by

DMIS Laboratory - Korea University 99 Jan 06, 2023
One Stop Anomaly Shop: Anomaly detection using two-phase approach: (a) pre-labeling using statistics, Natural Language Processing and static rules; (b) anomaly scoring using supervised and unsupervised machine learning.

One Stop Anomaly Shop (OSAS) Quick start guide Step 1: Get/build the docker image Option 1: Use precompiled image (might not reflect latest changes):

Adobe, Inc. 148 Dec 26, 2022
Optimal Transport Tools (OTT), A toolbox for all things Wasserstein.

Optimal Transport Tools (OTT), A toolbox for all things Wasserstein. See full documentation for detailed info on the toolbox. The goal of OTT is to pr

OTT-JAX 255 Dec 26, 2022
Code for Discovering Topics in Long-tailed Corpora with Causal Intervention.

Code for Discovering Topics in Long-tailed Corpora with Causal Intervention ACL2021 Findings Usage 0. Prepare environment Requirements: python==3.6 te

Xiaobao Wu 8 Dec 16, 2022
Blue Brain text mining toolbox for semantic search and structured information extraction

Blue Brain Search Source Code DOI Data & Models DOI Documentation Latest Release Python Versions License Build Status Static Typing Code Style Securit

The Blue Brain Project 29 Dec 01, 2022
Kashgari is a production-level NLP Transfer learning framework built on top of tf.keras for text-labeling and text-classification, includes Word2Vec, BERT, and GPT2 Language Embedding.

Kashgari Overview | Performance | Installation | Documentation | Contributing 🎉 🎉 🎉 We released the 2.0.0 version with TF2 Support. 🎉 🎉 🎉 If you

Eliyar Eziz 2.3k Dec 29, 2022
An Explainable Leaderboard for NLP

ExplainaBoard: An Explainable Leaderboard for NLP Introduction | Website | Download | Backend | Paper | Video | Bib Introduction ExplainaBoard is an i

NeuLab 319 Dec 20, 2022
Ελληνικά νέα (Python script) / Greek News Feed (Python script)

Ελληνικά νέα (Python script) / Greek News Feed (Python script) Ελληνικά English Το 2017 είχα υλοποιήσει ένα Python script για να εμφανίζει τα τωρινά ν

Loren Kociko 1 Jun 14, 2022
Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization

Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization 📥 Download Datasets 📥 Download Trained Models INTRODUCTION TH2ZH (

Nakhun Chumpolsathien 5 Jan 03, 2022
The RWKV Language Model

RWKV-LM We propose the RWKV language model, with alternating time-mix and channel-mix layers: The R, K, V are generated by linear transforms of input,

PENG Bo 877 Jan 05, 2023