Extracting and filtering paraphrases by bridging natural language inference and paraphrasing

Overview

nli2paraphrases

Source code repository accompanying the preprint Extracting and filtering paraphrases by bridging natural language inference and paraphrasing. The idea presented in the paper is to re-use NLI datasets for paraphrasing, by finding paraphrases through bidirectional entailment.

Setup

# Make sure to run this from the root of the project (top-level directory)
$ pip3 install -r requirements.txt
$ python3 setup.py install

Project Organization

├── README.md          
├── experiments        <- Experiment scripts, through which training and extraction is done
├── models             <- Intended for storing fine-tuned models and configs
├── requirements.txt   
├── setup.py           
├── src                <- Core source code for this project
│   ├── __init__.py    
│   ├── data           <- data loading scripts
│   ├── models         <- general scripts for training/using a NLI model
│   └── visualization  <- visualization scripts for obtaining a nicer view of extracted paraphrases

Getting started

As an example, let us extract paraphrases from SNLI.

The training and extraction process largely follows the same track for other datasets (with some new or removed flags, run scripts with --help flag to see the specifics).

In the example, we first fine-tune a roberta-base NLI model on SNLI sequences (s1, s2).
Then, we use the fine-tuned model to predict the reverse relation for entailment examples, and select only those examples for which entailment holds in both directions. The extracted paraphrases are stored into extract-argmax.

This example assumes that you have access to a GPU. If not, you can force the scripts to use CPU by setting --use_cpu, although the whole process will be much slower.

# Assuming the current position is in the root directory of the project
$ cd experiments/SNLI_NLI

# Training takes ~1hr30mins on Colab GPU (K80)
$ python3 train_model.py \
--experiment_dir="../models/SNLI_NLI/snli-roberta-base-maxlen42-2e-5" \
--pretrained_name_or_path="roberta-base" \
--model_type="roberta" \
--num_epochs=10 \
--max_seq_len=42 \
--batch_size=256 \
--learning_rate=2e-5 \
--early_stopping_rounds=5 \
--validate_every_n_examples=5000

# Extraction takes ~15mins on Colab GPU (K80)
$ python3 extract_paraphrases.py \
--experiment_dir="extract-argmax" \
--pretrained_name_or_path="../models/SNLI_NLI/snli-roberta-base-maxlen42-2e-5" \
--model_type="roberta" \
--max_seq_len=42 \
--batch_size=1024 \
--l2r_strategy="ground_truth" \
--r2l_strategy="argmax"

Project based on the cookiecutter data science project template. #cookiecutterdatascience

Owner
Matej Klemen
MSc student at Faculty of Computer and Information Science (University of Ljubljana). Mainly into data science.
Matej Klemen
Alfred-Restore-Iterm-Arrangement - An Alfred workflow to restore iTerm2 window Arrangements

Alfred-Restore-Iterm-Arrangement This alfred workflow will list avaliable iTerm2

7 May 10, 2022
Official PyTorch implementation of the paper: Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting.

Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting Official PyTorch implementation of the paper: Improving Graph Neural Net

Giorgos Bouritsas 58 Dec 31, 2022
This git repo contains the implementation of my ML project on Heart Disease Prediction

Introduction This git repo contains the implementation of my ML project on Heart Disease Prediction. This is a real-world machine learning model/proje

Aryan Dutta 1 Feb 02, 2022
Semantic Segmentation with SegFormer on Drone Dataset.

SegFormer_Segmentation Semantic Segmentation with SegFormer on Drone Dataset. You can check out the blog on Medium You can also try out the model with

Praneet 8 Oct 20, 2022
i-RevNet Pytorch Code

i-RevNet: Deep Invertible Networks Pytorch implementation of i-RevNets. i-RevNets define a family of fully invertible deep networks, built from a succ

Jörn Jacobsen 378 Dec 06, 2022
Official Pytorch Implementation of Length-Adaptive Transformer (ACL 2021)

Length-Adaptive Transformer This is the official Pytorch implementation of Length-Adaptive Transformer. For detailed information about the method, ple

Clova AI Research 93 Dec 28, 2022
Learning-based agent for Google Research Football

TiKick 1.Introduction Learning-based agent for Google Research Football Code accompanying the paper "TiKick: Towards Playing Multi-agent Football Full

Tsinghua AI Research Team for Reinforcement Learning 90 Dec 26, 2022
HuSpaCy: industrial-strength Hungarian natural language processing

HuSpaCy: Industrial-strength Hungarian NLP HuSpaCy is a spaCy model and a library providing industrial-strength Hungarian language processing faciliti

HuSpaCy 120 Dec 14, 2022
Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in Pytorch

Retrieval-Augmented Denoising Diffusion Probabilistic Models (wip) Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in P

Phil Wang 55 Jan 01, 2023
Transfer SemanticKITTI labeles into other dataset/sensor formats.

LiDAR-Transfer Transfer SemanticKITTI labeles into other dataset/sensor formats. Content Convert datasets (NUSCENES, FORD, NCLT) to KITTI format Minim

Photogrammetry & Robotics Bonn 64 Nov 21, 2022
CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

Frederick Wang 3 Apr 26, 2022
Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation

Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation The skip connections in U-Net pass features from the levels of enc

Boheng Cao 1 Dec 29, 2021
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022
An implementation of the 1. Parallel, 2. Streaming, 3. Randomized SVD using MPI4Py

PYPARSVD This implementation allows for a singular value decomposition which is: Distributed using MPI4Py Streaming - data can be shown in batches to

Romit Maulik 44 Dec 31, 2022
Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting" by Shu et al.

[Re] Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping

Robert Cedergren 1 Mar 13, 2020
This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of Coordinate Independent Convolutional Networks.

Orientation independent Möbius CNNs This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of

Maurice Weiler 59 Dec 09, 2022
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning"

Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning" Getting started Prerequisites CUD

70 Dec 02, 2022
FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS

FaceAPI AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using

Vladimir Mandic 395 Dec 29, 2022
A graphical Semi-automatic annotation tool based on labelImg and Yolov5

💕YOLOV5 semi-automatic annotation tool (Based on labelImg)

EricFang 247 Jan 05, 2023