Official repository with code and data accompanying the NAACL 2021 paper "Hurdles to Progress in Long-form Question Answering" (https://arxiv.org/abs/2103.06332).

Overview

Hurdles to Progress in Long-form Question Answering

This repository contains the official scripts and datasets accompanying our NAACL 2021 paper, "Hurdles to Progress in Long-form Question Answering". This repository supports inference from the pretrained retriever / generator & includes evaluation scripts.

Specifically, this codebase contains the model checkpoints, inference scripts for the retriever / generator model, generated outputs from model using c-REALM retrievals and random retrievals, scripts to compute ROUGE-L / R-Prec scores using the generations, scripts for question paraphrase classification, scripts for computing ROUGE-L bounds. You can also find the original Routing Transformer model's codebase here.

Setup

pip install transformers
pip install tensor2tensor

For GPU support, you might need to change the version of your TensorFlow depending on the CUDA / CuDNN installation (details). GPU support is strongly recommended for faster inference.

Model Checkpoints & Generations

Routing Transformer finetuned on ELI5: link
c-REALM TF Hub model + encoded retrieval corpora: link
c-REALM tokenized KILT Wikipedia data: link
c-REALM tokenized ELI5 training data: link
Pre-computed generations & QQP classifier: link

The original Routing Transformer model (pretrained on PG-19) and a local attention version of it can be found in the main repository (link).

Generating from the Routing Transformer

(We have provided the pre-computed retrievals from c-REALM on ELI5, so no need to run the c-REALM retriever)

  1. Download the "Routing Transformer finetuned on ELI5" model listed above and place it inside models.
wget https://storage.googleapis.com/rt-checkpoint/eli5_checkpoint.zip
unzip eli5_checkpoint.zip -d models
rm eli5_checkpoint.zip
  1. Download the generations folder from the Google Drive link listed as "Pre-computed generations & QQP classifier" above.

  2. Run eval_generate_eli5.py to generate from the model. We have provided c-REALM retrieval outputs in the script for the ELI5 validation / test split. For custom inputs, you will need to load the retriever and wikipedia corpus (see next section). Generation is on the slower side (~4 minutes per ELI5 QA pair on a 1080ti GPU), we hope to switch to the faster decoding mode in the Routing Transformer model in the near future.

Retrievals from c-REALM

(This script only tests the retriever, it doesn't depend on the Routing Transformer generator model)

  1. Download the "c-REALM TF Hub model + encoded retrieval corpora" model listed above. Place it inside the models folder.
wget https://storage.googleapis.com/rt-checkpoint/retriever.zip
unzip retriever.zip -d models
rm retriever.zip
  1. Download "c-REALM tokenized KILT Wikipedia data" if you are interested in retrieving from the KILT Wikipedia corpus and/or "c-REALM tokenized ELI5 training data" if you are interested in retrieving question paraphrases from the ELI5 training set. Place them inside the models folder.
wget https://storage.googleapis.com/rt-checkpoint/eli5_retrieval_train.zip
unzip eli5_retrieval_train.zip -d models
rm eli5_retrieval_train.zip
  1. Run eval_retriever_eli5.py to retrieve using c-REALM. Modify the --retrieval_corpus flag to choose the retrieval corpus.

Evaluation of Outputs

Setup

  1. Download the generations folder from the Google Drive link into this root folder.

  2. Clone the KILT repository in this folder and run the installation in a virtual environment.

git clone https://github.com/facebookresearch/KILT
cd KILT
virtualenv -p python3.7 kilt-venv
pip install -r requirements.txt
pip install --editable .
  1. If you are interested in using the Quora Question Paraphrase classifier (used in Section 3.2 of the paper), download the roberta-large-finetuned-qqp folder from "Pre-computed generations & QQP classifier" listed above. This model was built by Tu Vu.

  2. Download the ELI5 train, validation and test splits.

cd KILT
wget http://dl.fbaipublicfiles.com/KILT/eli5-train-kilt.jsonl -O train.jsonl
wget http://dl.fbaipublicfiles.com/KILT/eli5-dev-kilt.jsonl -O valid.jsonl
wget http://dl.fbaipublicfiles.com/KILT/eli5-test_without_answers-kilt.jsonl -O test.jsonl

Running evaluations

Enter the KILT folder and run the following command for evaluating p=0.6 with c-REALM retrievals on the validation set:

python kilt/eval_downstream.py ../generations/final_guess_eli5_0.6_predicted_retrieval.jsonl ../generations/final_gold_eli5_0.6_predicted_retrieval.jsonl

which should give you the output (partly reported in Table 6 of the paper),

{   'downstream': {   'accuracy': 0.0,
                      'em': 0.0,
                      'f1': 0.25566078582652935,
                      'rougel': 0.24417152125142375},
    'kilt': {   'KILT-accuracy': 0.0,
                'KILT-em': 0.0,
                'KILT-f1': 0.03414819887348917,
                'KILT-rougel': 0.03205580975169385},
    'retrieval': {'Rprec': 0.13258897418004187, '[email protected]': 0.2122586648057688}}

To evaluate other configurations, modify the paths in the command above. You can replace 0.6 with 0.9 for higher entropy generations, and replace predicted with random for randomly selected retrieval paragraphs (Hurdle #1 or Section 3.1 in the paper). Note that you should make this change for both the guess and gold files, to ensure correct alignment. We have only provided generations for the validation set since the test set answers / retrievals for ELI5 are hidden behind the KILT leaderboard.

Question paraphrase classification using QQP Classifier

In Section 3.2 of our paper, we used a Quora Question Paraphrase classifier to find question paraphrases amoung similar questions retrieved by c-REALM. To run this, make sure you have downloaded the QQP checkpoint (step 3 in Setup) and run,

python run_qqp.py --input_file generations/final_guess_eli5_0.6_similar_questions.jsonl

You should get a score of 43.6%. Note that this is a lower-bound --- qualitatively we found this classifier missed several paraphrase pairs with low lexical overlap, or cases where the retrieved training set question will have a super-set of the information needed to answer the validation set question.

Lower and Upper Bounds on ROUGE-L

Run the following to evaluate bounds on ROUGE-L. Make sure you have completed steps 1, 4 in the setup above. Scripts to evaluate other bounds involving training set retrieval coming soon!

cp generate_final_guess_bounds.py KILT/
cd KILT

# Copy input lowerbound, should get 20.0 ROUGE-L
python generate_final_guess_bounds.py --bound_type copy_input

# Random training set answer, should get 15.8-16.2 ROUGE-L depending on randomness
python generate_final_guess_bounds.py --bound_type random_train_ans

# "Performance" can be further boosted by randomly selecting from only longest answers
# for each training set question, up to ~16.7 ROUGE-L. This result is not reported in
# paper, but can be run using:
python generate_final_guess_bounds.py --bound_type random_train_ans_longest

# Longest gold answer upperbound, should get 21.2 ROUGE-L
python generate_final_guess_bounds.py --bound_type longest_gold

# Best gold answer upperbound, should get 26.2 ROUGE-L (takes a while to run, 45 min on single core)
python generate_final_guess_bounds.py --bound_type best_gold

Citation

If you found our paper or this repository useful, please cite:

@inproceedings{lfqa21,
author={Kalpesh Krishna and Aurko Roy and Mohit Iyyer},
Booktitle = {North American Association for Computational Linguistics},
Year = "2021",
Title={Hurdles to Progress in Long-form Question Answering},
}
Owner
Kalpesh Krishna
PhD student in Computer Science at UMass Amherst. Formerly IIT Bombay, @google-research, @mozilla, TTIC, @wncc.
Kalpesh Krishna
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
Learning to Identify Top Elo Ratings with A Dueling Bandits Approach

Learning to Identify Top Elo Ratings We propose two algorithms MaxIn-Elo and MaxIn-mElo to solve the top players identification on the transitive and

2 Jan 14, 2022
PED: DETR for Crowd Pedestrian Detection

PED: DETR for Crowd Pedestrian Detection Code for PED: DETR For (Crowd) Pedestrian Detection Paper PED: DETR for Crowd Pedestrian Detection Installati

36 Sep 13, 2022
Code for "Human Pose Regression with Residual Log-likelihood Estimation", ICCV 2021 Oral

Human Pose Regression with Residual Log-likelihood Estimation [Paper] [arXiv] [Project Page] Human Pose Regression with Residual Log-likelihood Estima

JeffLi 347 Dec 24, 2022
Code Repository for The Kaggle Book, Published by Packt Publishing

The Kaggle Book Data analysis and machine learning for competitive data science Code Repository for The Kaggle Book, Published by Packt Publishing "Lu

Packt 1.6k Jan 07, 2023
Diverse Image Captioning with Context-Object Split Latent Spaces (NeurIPS 2020)

Diverse Image Captioning with Context-Object Split Latent Spaces This repository is the PyTorch implementation of the paper: Diverse Image Captioning

Visual Inference Lab @TU Darmstadt 34 Nov 21, 2022
I tried to apply the CAM algorithm to YOLOv4 and it worked.

YOLOV4:You Only Look Once目标检测模型在pytorch当中的实现 2021年2月7日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map得到大幅度提升。 目录 性能情况 Performance 实现的内容 Achievement

55 Dec 05, 2022
The deployment framework aims to provide a simple, lightweight, fast integrated, pipelined deployment framework that ensures reliability, high concurrency and scalability of services.

savior是一个能够进行快速集成算法模块并支持高性能部署的轻量开发框架。能够帮助将团队进行快速想法验证(PoC),避免重复的去github上找模型然后复现模型;能够帮助团队将功能进行流程拆解,很方便的提高分布式执行效率;能够有效减少代码冗余,减少不必要负担。

Tao Luo 125 Dec 22, 2022
Privacy-Preserving Portrait Matting [ACM MM-21]

Privacy-Preserving Portrait Matting [ACM MM-21] This is the official repository of the paper Privacy-Preserving Portrait Matting. Jizhizi Li∗, Sihan M

Jizhizi_Li 212 Dec 27, 2022
Grammar Induction using a Template Tree Approach

Gitta Gitta ("Grammar Induction using a Template Tree Approach") is a method for inducing context-free grammars. It performs particularly well on data

Thomas Winters 36 Nov 15, 2022
The modify PyTorch version of Siam-trackers which are speed-up by TensorRT.

SiamTracker-with-TensorRT The modify PyTorch version of Siam-trackers which are speed-up by TensorRT or ONNX. [Updating...] Examples demonstrating how

9 Dec 13, 2022
Official implementation of the Implicit Behavioral Cloning (IBC) algorithm

Implicit Behavioral Cloning This codebase contains the official implementation of the Implicit Behavioral Cloning (IBC) algorithm from our paper: Impl

Google Research 210 Dec 09, 2022
The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies

REST The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies. Usage Download dataset Download

DMIRLAB 2 Mar 13, 2022
🧮 Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model after All

Accompanying source code to the paper "Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model A

Florian Wilhelm 39 Dec 03, 2022
Make your own game in a font!

Project structure. Included is a suite of tools to create font games. Tutorial: For a quick tutorial about how to make your own game go here For devel

Michael Mulet 125 Dec 04, 2022
Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm

Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetu

3 Dec 05, 2022
Neural Fixed-Point Acceleration for Convex Optimization

Licensing The majority of neural-scs is licensed under the CC BY-NC 4.0 License, however, portions of the project are available under separate license

Facebook Research 27 Oct 06, 2022
Pytorch implementation of DeepMind's differentiable neural computer paper.

DNC pytorch This is a Pytorch implementation of DeepMind's Differentiable Neural Computer (DNC) architecture introduced in their recent Nature paper:

Yuanpu Xie 91 Nov 21, 2022
🐦 Quickly annotate data from the comfort of your Jupyter notebook

🐦 pigeon - Quickly annotate data on Jupyter Pigeon is a simple widget that lets you quickly annotate a dataset of unlabeled examples from the comfort

Anastasis Germanidis 647 Jan 05, 2023
Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel order of RGB and BGR. Simple Channel Converter for ONNX.

scc4onnx Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel

Katsuya Hyodo 16 Dec 22, 2022