Auto White-Balance Correction for Mixed-Illuminant Scenes

Overview

Auto White-Balance Correction for Mixed-Illuminant Scenes

Mahmoud Afifi, Marcus A. Brubaker, and Michael S. Brown

York University   

Video

Reference code for the paper Auto White-Balance Correction for Mixed-Illuminant Scenes. Mahmoud Afifi, Marcus A. Brubaker, and Michael S. Brown. If you use this code or our dataset, please cite our paper:

@inproceedings{afifi2022awb,
  title={Auto White-Balance Correction for Mixed-Illuminant Scenes},
  author={Afifi, Mahmoud and Brubaker, Marcus A. and Brown, Michael S.},
  booktitle={IEEE Winter Conference on Applications of Computer Vision (WACV)},
  year={2022}
}

teaser

The vast majority of white-balance algorithms assume a single light source illuminates the scene; however, real scenes often have mixed lighting conditions. Our method presents an effective auto white-balance method to deal with such mixed-illuminant scenes. A unique departure from conventional auto white balance, our method does not require illuminant estimation, as is the case in traditional camera auto white-balance modules. Instead, our method proposes to render the captured scene with a small set of predefined white-balance settings. Given this set of small rendered images, our method learns to estimate weighting maps that are used to blend the rendered images to generate the final corrected image.

method

Our method was built on top of the modified camera ISP proposed here. This repo provides the source code of our deep network proposed in our paper.

Code

Training

To start training, you should first download the Rendered WB dataset, which includes ~65K sRGB images rendered with different color temperatures. Each image in this dataset has the corresponding ground-truth sRGB image that was rendered with an accurate white-balance correction. From this dataset, we selected 9,200 training images that were rendered with the "camera standard" photofinishing and with the following white-balance settings: tungsten (or incandescent), fluorescent, daylight, cloudy, and shade. To get this set, you need to only use images ends with the following parts: _T_CS.png, _F_CS.png, _D_CS.png, _C_CS.png, _S_CS.png and their associated ground-truth image (that ends with _G_AS.png).

Copy all training input images to ./data/images and copy all ground truth images to ./data/ground truth images. Note that if you are going to train on a subset of these white-balance settings (e.g., tungsten, daylight, and shade), there is no need to have the additional white-balance settings in your training image directory.

Then, run the following command:

python train.py --wb-settings ... --model-name --patch-size --batch-size --gpu

where, WB SETTING i should be one of the following settings: T, F, D, C, S, which refer to tungsten, fluorescent, daylight, cloudy, and shade, respectively. Note that daylight (D) should be one of the white-balance settings. For instance, to train a model using tungsten and shade white-balance settings + daylight white balance, which is the fixed setting for the high-resolution image (as described in the paper), you can use this command:

python train.py --wb-settings T D S --model-name

Testing

Our pre-trained models are provided in ./models. To test a pre-trained model, use the following command:

python test.py --wb-settings ... --model-name --testing-dir --outdir --gpu

As mentioned in the paper, we apply ensembling and edge-aware smoothing (EAS) to the generated weights. To use ensembling, use --multi-scale True. To use EAS, use --post-process True. Shown below is a qualitative comparison of our results with and without the ensembling and EAS.

weights_ablation

Experimentally, we found that when ensembling is used it is recommended to use an image size of 384, while when it is not used, 128x128 or 256x256 give the best results. To control the size of input images at inference time, use --target-size. For instance, to set the target size to 256, use --target-size 256.

Network

Our network has a GridNet-like architecture. Our network consists of six columns and four rows. As shown in the figure below, our network includes three main units, which are: the residual unit (shown in blue), the downsampling unit (shown in green), and the upsampling unit (shown in yellow). If you are looking for the Pythorch implementation of GridNet, you can check src/gridnet.py.

net

Results

Given this set of rendered images, our method learns to produce weighting maps to generate a blend between these rendered images to generate the final corrected image. Shown below are examples of the produced weighting maps.

weights

Qualitative comparisons of our results with the camera auto white-balance correction. In addition, we show the results of applying post-capture white-balance correction by using the KNN white balance and deep white balance.

qualitative_5k_dataset

Our method has the limitation of requiring a modification to an ISP to render the additional small images with our predefined set of white-balance settings. To process images that have already been rendered by the camera (e.g., JPEG images), we can employ one of the sRGB white-balance editing methods to synthetically generate our small images with the target predefined WB set in post-capture time.

In the shown figure below, we illustrate this idea by employing the deep white-balance editing to generate the small images of a given sRGB camera-rendered image taken from Flickr. As shown, our method produces a better result when comparing to the camera-rendered image (i.e., traditional camera AWB) and the deep WB result for post-capture WB correction. If the input image does not have the associated small images (as described above), the provided source code runs automatically deep white-balance editing for you to get the small images.

qualitative_flickr

Dataset

dataset

We generated a synthetic testing set to quantitatively evaluate white-balance methods on mixed-illuminant scenes. Our test set consists of 150 images with mixed illuminations. The ground-truth of each image is provided by rendering the same scene with a fixed color temperature used for all light sources in the scene and the camera auto white balance. Ground-truth images end with _G_AS.png, while input images ends with _X_CS.png, where X refers to the white-balance setting used to render each image.

You can download our test set from one of the following links:

Acknowledgement

A big thanks to Mohammed Hossam for his help in generating our synthetic test set.

Commercial Use

This software and data are provided for research purposes only and CANNOT be used for commercial purposes.

Related Research Projects

  • C5: A self-calibration method for cross-camera illuminant estimation (ICCV 2021).
  • Deep White-Balance Editing: A multi-task deep learning model for post-capture white-balance correction and editing (CVPR 2020).
  • Interactive White Balancing: A simple method to link the nonlinear white-balance correction to the user's selected colors to allow interactive white-balance manipulation (CIC 2020).
  • White-Balance Augmenter: An augmentation technique based on camera WB errors (ICCV 2019).
  • When Color Constancy Goes Wrong: The first work to directly address the problem of incorrectly white-balanced images; requires a small memory overhead and it is fast (CVPR 2019).
  • Color temperature tuning: A modified camera ISP to allow white-balance editing in post-capture time (CIC 2019).
  • SIIE: A learning-based sensor-independent illumination estimation method (BMVC 2019).
Owner
Mahmoud Afifi
Mahmoud Afifi
Official repository for the paper "Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks"

Easy-To-Hard The official repository for the paper "Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks". Gett

Avi Schwarzschild 52 Sep 08, 2022
Pseudo-Visual Speech Denoising

Pseudo-Visual Speech Denoising This code is for our paper titled: Visual Speech Enhancement Without A Real Visual Stream published at WACV 2021. Autho

Sindhu 94 Oct 22, 2022
Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective

Does-MAML-Only-Work-via-Feature-Re-use-A-Data-Set-Centric-Perspective Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective Installin

2 Nov 07, 2022
TextureGAN in Pytorch

TextureGAN This code is our PyTorch implementation of TextureGAN [Project] [Arxiv] TextureGAN is a generative adversarial network conditioned on sketc

Patsorn 147 Dec 14, 2022
Official code release for "GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis"

GRAF This repository contains official code for the paper GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. You can find detailed usage i

349 Dec 29, 2022
End-to-End Speech Processing Toolkit

ESPnet: end-to-end speech processing toolkit system/pytorch ver. 1.3.1 1.4.0 1.5.1 1.6.0 1.7.1 1.8.1 1.9.0 ubuntu20/python3.9/pip ubuntu20/python3.8/p

ESPnet 5.9k Jan 04, 2023
Make a surveillance camera from your raspberry pi!

rpi-surveillance Make a surveillance camera from your Raspberry Pi 4! The surveillance is built as following: the camera records 10 seconds video and

Vladyslav 62 Feb 03, 2022
[2021][ICCV][FSNet] Full-Duplex Strategy for Video Object Segmentation

Full-Duplex Strategy for Video Object Segmentation (ICCV, 2021) Authors: Ge-Peng Ji, Keren Fu, Zhe Wu, Deng-Ping Fan*, Jianbing Shen, & Ling Shao This

Daniel-Ji 55 Dec 22, 2022
4D Human Body Capture from Egocentric Video via 3D Scene Grounding

4D Human Body Capture from Egocentric Video via 3D Scene Grounding [Project] [Paper] Installation: Our method requires the same dependencies as SMPLif

Miao Liu 37 Nov 08, 2022
[IJCAI'21] Deep Automatic Natural Image Matting

Deep Automatic Natural Image Matting [IJCAI-21] This is the official repository of the paper Deep Automatic Natural Image Matting. Introduction | Netw

Jizhizi_Li 316 Jan 06, 2023
Datasets, Transforms and Models specific to Computer Vision

vision Datasets, Transforms and Models specific to Computer Vision Installation First install the nightly version of OneFlow python3 -m pip install on

OneFlow 68 Dec 07, 2022
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions

torch-imle Concise and self-contained PyTorch library implementing the I-MLE gradient estimator proposed in our NeurIPS 2021 paper Implicit MLE: Backp

UCL Natural Language Processing 249 Jan 03, 2023
Model of an AI powered sign language interpreter.

TEXT AND SPEECH TO SIGN LANGUAGE. A web application which takes in text or live audio speech recording as input, converts and displays the relevant Si

Mark Gatere 4 Mar 30, 2022
Codes for CVPR2021 paper "PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization"

PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization (CVPR 2021) This is the official implementation of PW

Intelligent Robotics and Machine Vision Lab 42 Dec 18, 2022
Reverse engineer your pytorch vision models, in style

🔍 Rover Reverse engineer your CNNs, in style Rover will help you break down your CNN and visualize the features from within the model. No need to wri

Mayukh Deb 32 Sep 24, 2022
STMTrack: Template-free Visual Tracking with Space-time Memory Networks

STMTrack This is the official implementation of the paper: STMTrack: Template-free Visual Tracking with Space-time Memory Networks. Setup Prepare Anac

Zhihong Fu 62 Dec 21, 2022
An implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks in PyTorch.

Neural Attention Distillation This is an implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep

Yige-Li 84 Jan 04, 2023
Unofficial pytorch implementation of 'Image Inpainting for Irregular Holes Using Partial Convolutions'

pytorch-inpainting-with-partial-conv Official implementation is released by the authors. Note that this is an ongoing re-implementation and I cannot f

Naoto Inoue 525 Jan 01, 2023
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation mode

Aiden Nibali 36 Oct 30, 2022
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022