An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding, top-down-bottom-up, and attention (consensus between columns)

Overview

GLOM - Pytorch (wip)

An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding, top-down-bottom-up, and attention (consensus between columns) for emergent part-whole heirarchies from data.

Citations

@misc{hinton2021represent,
    title   = {How to represent part-whole hierarchies in a neural network}, 
    author  = {Geoffrey Hinton},
    year    = {2021},
    eprint  = {2102.12627},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
Comments
  • help

    help

    Hello, when I tried to reproduce your model, I got this error. I'm not sure how to correct it, can y help me?

    Traceback (most recent call last): File "main.py", line 172, in outputs = custom_model(images,iters = 12) File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "/root/class/glom_pytorch/glom_pytorch.py", line 109, in forward consensus = self.attention(levels) File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 727, in call_impl result = self.forward(*input, **kwargs) File "/root/class/glom_pytorch/glom_pytorch.py", line 49, in forward sim.masked_fill(self_mask, TOKEN_ATTEND_SELF_VALUE) RuntimeError: Expected object of scalar type Bool but got scalar type Float for argument #2 'mask' in call to th_masked_fill_bool

    opened by DDxk369 1
  • Levels token

    Levels token

    Hello, thank you for your good work. I was trying to implement the idea you shared in this todo:

    https://github.com/lucidrains/glom-pytorch/projects/1#card-56284841

    The text reads: allow each level to be represented by a list of tokens, updated with attention, simliar to https://github.com/lucidrains/transformer-in-transformer

    I was going to implement it with a simple token at each level, but I was wondering if you had any suggestion on how to implement it correctly. Thank you.

    opened by zenos4mbu 0
  • Implementing geometric mean for consensus opinion/levels_mean

    Implementing geometric mean for consensus opinion/levels_mean

    Hi, I'm trying to implement the consensus opinion (levels_mean) as a geometric mean of the top-down predictions, bottom-up predictions, attention-weighted average of same-level embeddings, and embeddings of the previous time step as described by the original paper. Any ideas on how the weights should be set?

    At first I thought this could be a learnable parameter, but section 9.1 reads

    For interpreting a static image with no temporal context, the weights used for this weighted geometric mean need to change during the iterations that occur after a new fixation.

    which leads me to believe that these might need to be outputted on the fly a la vanilla attention as opposed to being learned. Maybe an MLP that takes in the four source embeddings and outputs four scalars as weights?

    opened by ryan-caesar-ramos 0
  • Classification

    Classification

    Hi @lucidrains ! Do you have any idea/insight on how to supervise classification (let's say, for example, MNIST digits classification) after having trained GLOM in an unsupervised way as a denoising autoencoder? In the paper that seems to be the final goal. However, it's not clear to me which columns and/or levels should be used for the classification. Also, since GLOM it's dealing with patches, how can single black patches vote towards a certain digit?

    In other words, after training GLOM as a denoising autoencoder on MNIST, what we have is:

    • p X p columns, where p is the number of patches per dimension (e.g. 7X7=49 patches)
    • 6 levels for each column, where the top-most levels should in theory represent higher-level entities, so it seems natural to search for the digit information in these layers
    • 6*2=12 iterations, to allow for information to be passed by both top-down and bottom-up networks

    Just by applying dimensionality reduction on the top-most level at different iterations does not seem enough to make the digit clusters emerge. So I'm wondering if you (or anybody else) have some insights on this. Cheers!

    opened by A7ocin 1
  • Bug in forward?

    Bug in forward?

    Hello, thank you for making this code available! I think there could be a potential bug in the first line of the forward function:

    b, h, w, _, device = *img.shape, img.device

    but the input image shape is of kind b c h w, so it could be fixed by replacing it with

    b, _, h, w, device = *img.shape, img.device

    Am I wrong?

    opened by A7ocin 9
Owner
Phil Wang
Working with Attention. It's all we need.
Phil Wang
Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On

Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On [Project website] [Dataset] [Video] Abstract We propose a new g

71 Dec 24, 2022
Implementation of Sequence Generative Adversarial Nets with Policy Gradient

SeqGAN Requirements: Tensorflow r1.0.1 Python 2.7 CUDA 7.5+ (For GPU) Introduction Apply Generative Adversarial Nets to generating sequences of discre

Lantao Yu 2k Dec 29, 2022
Signals-backend - A suite of card games written in Python

Card game A suite of card games written in the Python language. Features coming

1 Feb 15, 2022
Active window border replacement for window managers.

xborder Active window border replacement for window managers. Usage git clone https://github.com/deter0/xborder cd xborder chmod +x xborders ./xborder

deter 250 Dec 30, 2022
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex

139 Jan 01, 2023
a delightful machine learning tool that allows you to train, test and use models without writing code

igel A delightful machine learning tool that allows you to train/fit, test and use models without writing code Note I'm also working on a GUI desktop

Nidhal Baccouri 3k Jan 05, 2023
PyTorch implementation of our ICCV 2021 paper Intrinsic-Extrinsic Preserved GANs for Unsupervised 3D Pose Transfer.

Unsupervised_IEPGAN This is the PyTorch implementation of our ICCV 2021 paper Intrinsic-Extrinsic Preserved GANs for Unsupervised 3D Pose Transfer. Ha

25 Oct 26, 2022
A Python package for performing pore network modeling of porous media

Overview of OpenPNM OpenPNM is a comprehensive framework for performing pore network simulations of porous materials. More Information For more detail

PMEAL 336 Dec 30, 2022
The coda and data for "Measuring Fine-Grained Domain Relevance of Terms: A Hierarchical Core-Fringe Approach" (ACL '21)

We propose a hierarchical core-fringe learning framework to measure fine-grained domain relevance of terms – the degree that a term is relevant to a broad (e.g., computer science) or narrow (e.g., de

Jie Huang 14 Oct 21, 2022
[SIGGRAPH Asia 2021] Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN

Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN [Paper] [Project Website] [Output resutls] Official Pytorch i

Badour AlBahar 215 Dec 17, 2022
Human head pose estimation using Keras over TensorFlow.

RealHePoNet: a robust single-stage ConvNet for head pose estimation in the wild.

Rafael Berral Soler 71 Jan 05, 2023
Analysing poker data from home games with friends

Poker Game Analysis Analysing poker data from home games with friends. Not a lot of data is collected, so this project is primarily focussed on descri

Stavros Karmaniolos 1 Oct 15, 2022
[CVPR'21] MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation

MonoRUn MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. CVPR 2021. [paper] Hansheng Chen, Yuyao Huang, Wei Tian*

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 96 Dec 10, 2022
OpenMMLab Pose Estimation Toolbox and Benchmark.

Introduction English | 简体中文 MMPose is an open-source toolbox for pose estimation based on PyTorch. It is a part of the OpenMMLab project. The master b

OpenMMLab 2.8k Dec 31, 2022
unofficial pytorch implementation of RefineGAN

RefineGAN unofficial pytorch implementation of RefineGAN (https://arxiv.org/abs/1709.00753) for CSMRI reconstruction, the official code using tensorpa

xinby17 5 Jul 21, 2022
The official PyTorch code for 'DER: Dynamically Expandable Representation for Class Incremental Learning' accepted by CVPR2021

DER.ClassIL.Pytorch This repo is the official implementation of DER: Dynamically Expandable Representation for Class Incremental Learning (CVPR 2021)

rhyssiyan 108 Jan 01, 2023
Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Features"

EDM-subgenre-classifier This repository contains the code for "Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Fea

11 Dec 20, 2022
A python script to dump all the challenges locally of a CTFd-based Capture the Flag.

A python script to dump all the challenges locally of a CTFd-based Capture the Flag. Features Connects and logins to a remote CTFd instance. Dumps all

Podalirius 77 Dec 07, 2022
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022
Spatial Action Maps for Mobile Manipulation (RSS 2020)

spatial-action-maps Update: Please see our new spatial-intention-maps repository, which extends this work to multi-agent settings. It contains many ne

Jimmy Wu 27 Nov 30, 2022