Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data

Overview

1 Meta-FDMIxup

Repository for the paper :

Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data. (ACM MM 2021)

paper

News! the representation video loaded in 2021/10/06 in Bilibili

News! the representation video loaded in 2021/10/10 in Youtube

image

If you have any questions, feel free to contact me. My email is [email protected].

2 setup and datasets

2.1 setup

A anaconda envs is recommended:

conda create --name py36 python=3.6
conda activate py36
conda install pytorch torchvision -c pytorch
pip3 install scipy>=1.3.2
pip3 install tensorboardX>=1.4
pip3 install h5py>=2.9.0

Then, git clone our repo:

git clone https://github.com/lovelyqian/Meta-FDMixup
cd Meta-FDMixup

2.2 datasets

Totally five datasets inculding miniImagenet, CUB, Cars, Places, and Plantae are used.

  1. Following FWT-repo to download and setup all datasets. (It can be done quickly)

  2. Remember to modify your own dataset dir in the 'options.py'

  3. Under our new setting, we randomly select $num_{target}$ labeled images from the target base set to form the auxiliary set. The splits we used are provided in 'Sources/'.

3 pretrained ckps

We provide several pretrained ckps.

You can download and put them in the 'output/pretrained_ckps/'

3.1 pretrained model trained on the miniImagenet

3.2 full model meta-trained on the target datasets

Since our method is target-set specific, we have to train a model for each target dataset.

Notably, as we stated in the paper, we use the last checkpoint for target dataset, while the best model on the validation set of miniImagenet is used for miniImagenet. Here, we provide the model of 'miniImagenet|CUB' as an example.

4 usage

4.1 network pretraining

python3 network_train.py --stage pretrain  --name pretrain-model --train_aug 

If you have downloaded our pretrained_model_399.tar, you can just skip this step.

4.2 pretrained model testing

# test source dataset (miniImagenet)
python network_test.py --ckp_path output/checkpoints/pretrain-model/399.tar --stage pretrain --dataset miniImagenet --n_shot 5 

# test target dataset e.g. cub
python network_test.py --ckp_path output/checkpoints/pretrain-model/399.tar --stage pretrain --dataset cub --n_shot 5

you can test our pretrained_model_399.tar in the same way:

# test source dataset (miniImagenet)
python network_test.py --ckp_path output/pretrained_ckps/pretrained_model_399.tar --stage pretrain --dataset miniImagenet --n_shot 5 


# test target dataset e.g. cub
python network_test.py --ckp_path output/pretrained_ckps/pretrained_model_399.tar --stage pretrain --dataset cub --n_shot 5

4.3 network meta-training

# traget set: CUB
python3 network_train.py --stage metatrain --name metatrain-model-5shot-cub --train_aug --warmup output/checkpoints/pretrain-model/399.tar --target_set cub --n_shot 5

# target set: Cars
python3 network_train.py --stage metatrain --name metatrain-model-5shot-cars --train_aug --warmup output/checkpoints/pretrain-model/399.tar --target_set cars --n_shot 5

# target set: Places
python3 network_train.py --stage metatrain --name metatrain-model-5shot-places --train_aug --warmup output/checkpoints/pretrain-model/399.tar --target_set places --n_shot 5

# target set: Plantae
python3 network_train.py --stage metatrain --name metatrain-model-5shot-plantae --train_aug --warmup output/checkpoints/pretrain-model/399.tar --target_set plantae --n_shot 5

Also, you can use our pretrained_model_399.tar for warmup:

# traget set: CUB
python3 network_train.py --stage metatrain --name metatrain-model-5shot-cub --train_aug --warmup output/pretrained_ckps/pretrained_model_399.tar --target_set cub --n_shot 5

4.4 network testing

To test our provided full models:

# test target dataset (CUB)
python network_test.py --ckp_path output/pretrained_ckps/full_model_5shot_target_cub_399.tar --stage metatrain --dataset cub --n_shot 5 

# test target dataset (Cars)
python network_test.py --ckp_path output/pretrained_ckps/full_model_5shot_target_cars_399.tar --stage metatrain --dataset cars --n_shot 5 

# test target dataset (Places)
python network_test.py --ckp_path output/pretrained_ckps/full_model_5shot_target_places_399.tar --stage metatrain --dataset places --n_shot 5 

# test target dataset (Plantae)
python network_test.py --ckp_path output/pretrained_ckps/full_model_5shot_target_places_399.tar --stage metatrain --dataset plantae --n_shot 5 


# test source dataset (miniImagenet|CUB)
python network_test.py --ckp_path output/pretrained_ckps/full_model_5shot_target_cub_best_eval.tar --stage metatrain --dataset miniImagenet --n_shot 5 

To test your models, just modify the 'ckp-path'.

5 citing

If you find our paper or this code useful for your research, please cite us:

@article{fu2021meta,
  title={Meta-FDMixup: Cross-Domain Few-Shot Learning Guided by Labeled Target Data},
  author={Fu, Yuqian and Fu, Yanwei and Jiang, Yu-Gang},
  journal={arXiv preprint arXiv:2107.11978},
  year={2021}
}

6 Note

Notably, our code is built upon the implementation of FWT-repo.

Owner
Fu Yuqian
Fu Yuqian
My course projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU)

ML2021Spring There are my projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU) Course Web : https://speech.ee.

Ding-Li Chen 15 Aug 29, 2022
SciPy fixes and extensions

scipyx SciPy is large library used everywhere in scientific computing. That's why breaking backwards-compatibility comes as a significant cost and is

Nico Schlömer 16 Jul 17, 2022
Multi Agent Reinforcement Learning for ROS in 2D Simulation Environments

IROS21 information To test the code and reproduce the experiments, follow the installation steps in Installation.md. Afterwards, follow the steps in E

11 Oct 29, 2022
NL-Augmenter 🦎 → 🐍 A Collaborative Repository of Natural Language Transformations

NL-Augmenter 🦎 → 🐍 The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformat

684 Jan 09, 2023
Detecting and Tracking Small and Dense Moving Objects in Satellite Videos: A Benchmark

This dataset is a large-scale dataset for moving object detection and tracking in satellite videos, which consists of 40 satellite videos captured by Jilin-1 satellite platforms.

Qingyong 87 Dec 22, 2022
Official code for "Mean Shift for Self-Supervised Learning"

MSF Official code for "Mean Shift for Self-Supervised Learning" Requirements Python = 3.7.6 PyTorch = 1.4 torchvision = 0.5.0 faiss-gpu = 1.6.1 In

UMBC Vision 44 Nov 21, 2022
Efficiently computes derivatives of numpy code.

Note: Autograd is still being maintained but is no longer actively developed. The main developers (Dougal Maclaurin, David Duvenaud, Matt Johnson, and

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 6.1k Jan 08, 2023
This repository contains the code used for the implementation of the paper "Probabilistic Regression with HuberDistributions"

Public_prob_regression_with_huber_distributions This repository contains the code used for the implementation of the paper "Probabilistic Regression w

David Mohlin 1 Dec 04, 2021
A toolset for creating Qualtrics-based IAT experiments

Qualtrics IAT Tool A web app for generating the Implicit Association Test (IAT) running on Qualtrics Online Web App The app is hosted by Streamlit, a

0 Feb 12, 2022
Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation

Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation This repository contains code and data f

Zoey Liu 0 Jan 07, 2022
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE

DV Lab 230 Dec 31, 2022
Code release for General Greedy De-bias Learning

General Greedy De-bias for Dataset Biases This is an extention of "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). T

4 Mar 15, 2022
Small repo describing how to use Hugging Face's Wav2Vec2 with PyCTCDecode

🤗 Transformers Wav2Vec2 + PyCTCDecode Introduction This repo shows how 🤗 Transformers can be used in combination with kensho-technologies's PyCTCDec

Patrick von Platen 102 Oct 22, 2022
Material del curso IIC2233 Programación Avanzada 📚

Contenidos Los contenidos se organizan según la semana del semestre en que nos encontremos, y según la semana que se destina para su estudio. Los cont

IIC2233 @ UC 72 Dec 23, 2022
A Simulated Optimal Intrusion Response Game

Optimal Intrusion Response An OpenAI Gym interface to a MDP/Markov Game model for optimal intrusion response of a realistic infrastructure simulated u

Kim Hammar 10 Dec 09, 2022
Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices, ACM Multimedia 2021

Codes for ECBSR Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices Xindong Zhang, Hui Zeng, Lei Zhang ACM Multimedia 202

xindong zhang 236 Dec 26, 2022
Official pytorch implementation of Rainbow Memory (CVPR 2021)

Rainbow Memory: Continual Learning with a Memory of Diverse Samples

Clova AI Research 91 Dec 17, 2022
optimization routines for hyperparameter tuning

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

Marc Claesen 398 Nov 09, 2022
[NeurIPS2021] Code Release of K-Net: Towards Unified Image Segmentation

K-Net: Towards Unified Image Segmentation Introduction This is an official release of the paper K-Net:Towards Unified Image Segmentation. K-Net will a

Wenwei Zhang 423 Jan 02, 2023
GEP (GDB Enhanced Prompt) - a GDB plug-in for GDB command prompt with fzf history search, fish-like autosuggestions, auto-completion with floating window, partial string matching in history, and more!

GEP (GDB Enhanced Prompt) GEP (GDB Enhanced Prompt) is a GDB plug-in which make your GDB command prompt more convenient and flexibility. Why I need th

Alan Li 23 Dec 21, 2022